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THE BEGINNING:

This book is designed to be an introduction the field of machine and 
assembly language programming for the Sinclair ZX80 and ZXB1.

It may be that you are coming to this book with no clear idea of what 
machine language programming is all about. Indeed the difference between 
machine language and assembly language m^y not be clear to you, nor indeed 
how they differ from programming in BASIC.

So let us look at the way a computer operates:

PROGRAMMER-

Î
TV SCREEN <-

•» KEY BOARO

I
- OPERATING SYSTEM

CENTRAL 
PROCESSING 
UNIT

What this diagram shows is that there is a barrier between the programmer 
and the central proccessing unit of the computer. It is not possible 
under normal programming for the programmer to tell the central processing 
unit - usually referred to as the CPO - what to do.

In the Sinclair machines the CPU is a Z80A chip, and I am sure it comes as 
no surprise to learn that the Z80A does not understand a word of 'BASIC'I

Indeed no CPU is able to be programmed in a way that is directly readable 
by humans'?

5.



If you think about it for long enough, you will realise that it would be
impossible in any case to give a chip in a computer an Instruction that
-would make any sense to a human. Take the top off your Sinclair and have
a look at the chip marked 'NEC' - this is the Z8QA CPU. Obviously this
chip in your computer can only respond to electrical signals that are 
passed on to it by the rest of the drcuitryl

The way this chip is designed, it can accept signals simultaneously from 
eight of the pins connected to it.
Keeping in mind that what is really happening is electrical signals, we 
can still adopt a convention to represent these signals - for example 
showing a '1' if there is a signal, or a '0' if there is no signal.

A typical instruction might therefore look something Hke: 
0 0 11 110 0

Quite a long way from something like 
'Let A - A + 1", 

for example, isn't it I

Nonetheless, this is what machine language is all about. The name says it 
alii It is a language for machines.

At this stage you may be asking yourself - if this is what rechine 
language programming is all about, wijy bother? Why net accept the 
benefits of someone else's work which allows us to program the computer in 
a language we can all understand, such as Basic or Cobol?

The Main Benefits Of Machine Language Are:

FASTER EXECUTION OF THE PROGRAM

MORE EFFICIENT USE OF MEMORY

SHORTER PROGRAMS (IN MEMORY)

FREEUOM FROM OPERATING SYSTEM
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All of the above benefits are a direct result of programming in a language 
that the CPU can understand without having to have it translated first.

When you program in Basic, the operating system is the program that is 
really being run by the machine. The program is something like:

NEXT Look at next instruction
Translate it into machine language
Perform that instruction
Store the result if required 
Go to NEXT again

This method of programming is up to 60 times slower than a program written 
directly in machine language!

Nonetheless, we would have to be among the first to admit that programming 
in machine language does have some drawbacks.

THE MAIN DISADVANTAGES OF MACHINE LANGUAGE ARE:

PROGRAMS DIFFICULT TO READ ANU DEBUG

IMPOSSIBLE TO ADAPT TO OTHER COMPUTERS

LONGER PROGRAMS (IN INSTRUCTIONS)

ARITHMETIC CALCULATIONS DIFFICULT

This means that we must make a very conscious decision of which 
programming method we should use for particular applications.
A very long program for financial applications should be written in a 
language designed to deal with numbers and one in which programs can be 
easily modified if required.

On the other hand there is nothing quite so bad as an arcade game written 
in basic - when you get down to it, it is just too slow.
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Your own needs, the amount of memory tn your computer, the time to put 
into prograiming, and so on will determine your choice of programming 
language.

MACHINE VS. ASSEMBLY LANGUAGE:

There is only one major difference between assembly language and machine 
language: assently language is more easily read by humans than machine 
language (but on the other hand, computers can't read assembly language).

Assembly language is a partial translation of machine language so that it 
can be read by humans in a form that is easier to understand than
0111 0111.

It is not an adaptation of machine 
language there is one and only one 
instruction (and there is only one 
asssembly language instruction).

language, such as BASIC. In assembly 
instruction for each machine language 
machine language instruction for each

We therefore say that assembly language is equivalent to machine language.

Assenbly language makes use of Mnemomics (or abbreviations). For example 
at this stage, the Instruction

INC HL
may not mean much to you, but at least you can read it. It you were told 
that 'INC' is a standard abbreviation (or mnemonic) for increase and that 
HL is a variable, then by simply looking at that instruction you can get a 
feel for what is happening.

The same instruction in machine language is
23

Now obviously you can also "read" that instruction, in the sense that you 
can read the number, but it isn't going to mean much to you unless you 
have a table to look up.
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Assembly language can be converted directly to machine code by a program 
or by you. The program is called an assentier, and we understand that an 
assentier for the ZX 81 is soon to be available.

Nonetheless, such assemblers typically require bK of memory, and this is 
not going to be much use if you have only 1 - 4 K of memory.

You will have to do the translation of mnemonics by hand, using the tables 
provided in this book.

It's hard, it's frustrating, it's inconvenient, but it's wonderful 
practice and gives you a great insight into the way computers work.
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WHAT IS THE CPU

If we want to talk the same language as the CPU we have to know what sort 
of a person the CPU Is. Eventually you may be asking the CPU to do some 
quite remarkable tasks from playing chess to keeping your books of 
accounts.

The CPU is no big mystery. I like to think of the CPU as a lonely little 
fellow, sitting in the middle of your Sinclair, being asked to do things 
all the time.

Especially calculations.

But the poor fellow doesn't even have a piece of paper and pencil to keep 
track of what is happening. How does he do it?

Let us look at one example in more detail - s^y you want the CPU to work 
out the time in New York, knowing the time in London.

Now given that the CPU doesn't know anything, first of all you tell it 
what the time in London is: 10 o'clock. The CPU has nowhere to keep this 
information and doesn't know what you will ask it to do next, so it puts 
that information away in a box, say box #1.

Then you tell it the time difference, sqy five hours earlier, and it puts 
that away in box #2.

Comes the time for calculations, it races across to box #1, gets the 
nunber, goes to box f2, performs the calculation, and puts the result 
away, sejy in box #3.

10-5-5

The answer of course is 5 0 clock.



All of this racing between boxes, adding, subtracting and so on would be 
extremely tedious 1f the CPU had to do 1t all In Its head, so It does 
exactly what you or I would do - It counts on Its fingers and toes.

The CPU's hands and feet are called Registers

The Z80 chip 1s remarkable among CPU's 1n that It has a lot of hands and 
toes - but we will get to that later.

In our time difference analysis above, we actually skipped a step when we 
just glibly said "performs the calculation*.

The example Is one you might be able to do In your head, but If you were 
given two large numbers to add without the benefit of calculator or pencil 
and paper you might have some difficulty. So let's go back to our time 
difference example:

For simplicity's sake, let's call one of the CPU's hands "Hand A". How 
does the CPU manipulate the contents of the box fl and box f2? The 
following sequence Is pretty close to what the CPU would actually do

* Count out the value of box fl on the 
fingers of Hand A;

* Subtract the contents of box f2 from 
what he has already on his fingers;

* Look at the value on the fingers of Hand A 
and store It In box f3.

Now If this 1s what truly happens, there are some pretty phenomenal 
conclusions to be drawn from this:

1. The CPU would not be able to deal with 
a number Hke 11.53 - 1t could only 
deal in whole numbers.

2. The CPU would be limited In its 
calculations to whatever number It 
could count to on Its fingers.

This Is truel
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The main consolation however is that the CPU has a lot of hands and feet 
and can keep count on each of them separately, and that it can count to 
255 using only the 8 fingers of Hand A.

We will deal in the next chapter with the details of how the CPU can count 
up to more than 8 on each hand while we can only manage 10 using two 
handsl Suffice it to say that each hand can count’to 255 and each foot 
can be used to count to over 64,0001

The time difference execise above has still not been represented tn 
anything like the language the CPU understands - all we have done is 
describe the processes. Let us now use mnemonics (Abbreviations) to 
Instruct the CPU at each step:

SETTING UP:
LD (BOX fl), 10
LD (BOX f2), 5

CALCULATING:
LD A, (BOX fl)
SUB A, (BOX f2)
LD (BOX f3), A

These Instructions may seem a little terse at first, but after all 
menmonlcs are mnemonics. "LD Is an abbreviation for "load* so that

LD A,1
for example, would mean load A with 1 : that Is count off 'one* on the 
fingers of hand A.

We also use a rather clever Image in these menmonlcs by the use of 
brackets: the brackets are used to indicate we wish to deal with the 
contents of whatever Is inside the brackets.

It should be fairly easy to remember this on a visual basis because 
brackets do look like they are meant to Indicate a container.

So running through the mnemonics above, we load the contents of Box fl and 
f2 with 10 and 5, ...etc... to get the final result of 5 in box f3.

All of this is fairly simple to follow and I am sure you can understand
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that while you are doing this calculation the nunbers on hand “A" 
represent the time in New York. A minute later they mqy be used to 
represent the nunber of employees in a company, and at some other time how 
much money you have.

You may be used to the concept of variables from your BASIC programming, 
but this is a concept you must leave behind in machine language 
programming.

The fingers of Hand "A" are not a variable in the same sense as in a BASIC 
program. They are merely trfiat the CPU uses to count with.

One of the big differences in programming in machine language and

programming in Basic is in fact this lack of variables.

It is always possible to store things awqy in the memory locations, or 
boxes as we called them in the above example. But these are not really 
variables either. They are however immensely useful, but no more than 
memory locations set aside for specific purposes.

Let us go back to the CPU and consider what happens 1f someone comes in to 
the room in the middle of a calculation? Embarrassing situation with 
fingers flying, all full of information that he can't afford to lose.

The polite thing to do would be to get up and shake hands, but what would 
happen to all those numbers? One solution would be to quickly write down 
all the nunbers and store them in boxes. But then you would have to 
remember in which boxes you had stored the information - and where are you 
going to store the nunber that tells you where the information is?

Our CPU gets away with it by using one of those tall spiky things that
some people keep bills, spare notes, etc. I am sure you know those stacks 
where you spike one piece of paper on and then the next, and so one. It's
great if you want the top piece of paper only, but very inconvenient if
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you want to see what's in the middle because you have to go through all 
the pieces stuck on the spike.

This little stack, however, is ideally suited to our CPU because it only 
wants to look at the top piece of paper. When the “interrupt“ comes, he 
puts all the information on the stack, and as soon as the interrupt is 
over, the CPU pops the top piece of paper off and continues with its 
calculation.

In computer terminology we call this spike a “STACK". When we put a piece 
of information of the stack we “PUSH" it on, and vhen we retrieve the 
information, we "POP“ it off.

All kinds of information can be “PUSH"ed and “PUP"ed on and off the stack 
- for example if the CPU was in the middle of a complex calculation when 
the interrupt came, not only would it need to save whatever information it 
had on its fingers and toes but also what point of the calculation he had 
reached. This would involve many separate “PUSH“es and then many separate 
"P0P"s at the end.

The stack is also extremely useful if the CPU runs out of hands.

For reasons best known to itself our CPU likes to keep the stack stuck to 
the ceiling just above ttfiere he is working. This means that the more 
information is “PUSH"ed on, the further the stack grows downwards.

The main advantage of the stack is that the CPU does not need to remember 
which box the information is in - it knows it is the last piece “PUSH“ed 
on the stack, because it has organised itself so that it would always be 
so.
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THE WAY COMPUTERS COUNT

We mentioned in the previous chaper that the CPU was able to count to Z5b 
using only eight fingers. How can this be when with 10 fingers we can 
only manage to count to 10?

It is certainly not because computers are smarter (they aren't) but 
because the CPU is more organised in its information than we are: why 
should raising your index finger have the same value (•'!') as having 
your little finger raised?

It seems obvious that if you so wished you could represent two different 
numbers in this way.

It is very much the same sort of thing as realising that the nunber 001 is 
different from the number 100. The plain truth is that humans are not 
very efficient in the use of fingers for counting.

The CPU understands that not having a finger is of some information and 
that which finger is raised is a valuable piece of information.

With only two fingers it ids possible to devise a wdy to count from 0 to 
3, as follows:

We can indicate not having 
a finger raised as 'O', 

and having a finger raised 
as '1'.

this does not mean 11 = 3.

It means we chose to let 
the representation 11 (or 
two fingers) have the 
value 3.
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We could Just as easily have chosen a different representation.

There is a direct relationship between this and binary representation. 
The CPU's fingers are locations in memory and they can be made to indicate 
on and off ( or '0' and '1' as convention dictates).

If we added a third finger to our example above we could represent all the 
numbers from 0 to 7. Three fingers for 0 - 7 I
Four fingers would be able to represent all the nunbers from 0 to 151

In order to simplify the notation of such numbers, and to avoid confusion 
in trying to write down the nunber eleven as opposed to indicating that 
two bits were set, a universal convention has been adopted:

The nunbers 10 - 15 are indicated by the letters A - F.

Decimal 10 «> A (We show •> as 'equal')
11 -> 8
12 •> C
13 -> D
14 -> E
15 •> F

Simple isn't it?

This way of treating nunbers is called the Hexadecimal Format.

In machine language programming, it is . convenient to deal with numbers in 
a Hexadecimal Format.

This 1s only a convention and if you so wished you could write all your 
Instruction 1n normal decimal format. Naturally you would need a program 
to convert the decimal notation to binary bits being on and off. But this 
is not a major problem because we use a program to convert the hexadecimal 
notation to binary bits.
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It is convenient for us to use the hexadecimal format because:

1. It is easy to convert from this form to binary,which tells us 
which bit (or finger) is doing what.

2. It gives us an easy means of seeing whether numbers are 8-bit 
or 16-bit.

3. It standardises all numbers to sets of 2-digit numbers.

4. It is the common convention and familiarity with hexadecimal 
will allow you to read other books and manuals more easily.

But it is only a convention and not a sacred rule.

The hexadecimal system as we mentioned earlier, lets us represent the 
nunbers 0 to 15 using only 4 bits. Any 8-bit memory location or 8-bit 
register can therefore be described by two sets of 4 bits.

(This is the same as saying that any combination of 10 fingers can be 
represented by two hands of 5 fingers each).

The reason we are concerned with 8-bit memory locations and 8-bit 
registers is that this is the structure ot the Sinclair Computers. ATT 
memory locations and all single registers have 8 bits.

(This is not hard to conceptualise - it's like saying all humans have 5 
fingers on each hand).
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Taking things one step at a time, let us become familiar with 4 fingers 
first:

\W)
1111 = 8 + 4 + 2 + 1 = Decimal 15 

= F (In 
Hexadecimal Notation)

For those of you with a mathematical bent, you may notice that the number 
each finger represents is multiplied by 2 as you go to the left. If we 
number the fingers:

Then the value of each finger is '2 to the power N' where N Is the finger 
nunber. Let's call a 4-finger hand a "Handlet" (just as a small cigar Is 
a cigarette?)

To prevent confusion, some people write "H" after a hexadecimal nunfrer 
(eg. 10H). The "H" has no hexadecimal convention.

EXERCISE:

What decimal and hexadecimal value do the following arrangement of bits 
(or fingers) represent?

DECIMAL HEXADECIMAL

0010
0110
1001
1010
1100
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It is important for you to become familiar with the hexadecimal 
convention, and if you had difficulty with the concept, do read the last 
few pages again before going on.

Let us examine what happens if we want a number greater than lb ? Say 
16? We would use the next finger on the left, as:

= 16 Decimal • 10H (Hexadecimal)

The reason we write the number as 10H is that we divide the hand in two 
“4-Bit Handiets“. We can therefore easily denote each handiet by one 
ofthe hexadecimal numbers representing 0 to 15 ( 0-9 & A-F ).

In this way any 8-Bit hand can be written as exactly two hexadecimal 
handiets:

Two 
Hexadecimal

Digits

The "Handiets" on the left indicates 16 times as much as the “Handiet" on 
the right. This is much the same wa/l asl in decimal, notation. The digit in 
the “tens" column is worth ten times as much as the digit in the "ones" 
column.
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We convert nuntoers in decimal format such as 15 automatically to:
15 - (1*10) + 5

This is so automatic that we don't even think about it.

It is exactly the same thing in hexadecimal notation. To convert back 
from hexadecimal notation to decimal notation, we multiply the hexadecimal 
number on the left "handiet" by lb. Using the example above:

10H • (1*16) + 0
• 16 Uecimal

This Is how we are able to count to 255 using only 8 fingers. The maximum 
is obtained when all fingers are held up:

F F

FF

FFH • (F*16) + F
- (15*16) + 15
= 255 (Decimal)

The smallest nunber is when no fingers are held up:

OOH « 0 Decimal

Note that all nunbers, from the smallest to the largest require 2 and only 
2 digits to define the number.
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Try out for yourself any combination of 8 digits and see if you can 
convert it to hexadecimal notation, and then into decimal notation.

It may seem a little strange and awkward at first, but you will soon get 
the hang of it.

Also that when you count in hexadecimal, you do the same as in decimal:

Decimal: 26 27 28 29 30 Etc.

Hexadecimal: 26 27 28 2 9 2 A 28 2C
2D 2E 2F 30 Etc.

The values of the nunbers in the decimal and hexadecimal series above have 
different values of course. Note that after 29H you get 2AH, no 30HI
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NEGATIVE NUMBERS

The last chapter showed you how It Is possible to represent the numbers 0 
to 255 on the fingers of one hand.

I also said that the 280 chip was mainly designed for operations on one 
hand (that 1s 8-bit operations) - 1n other words, although some 
instructions allow you the use of two hands )thus giving a number range of 
0 - 65,535) most of the work will be done tn registers and nemory 
locations that only allow a number range of 00 - FF (in hexadecimal 
notation).

What about negative numbers?

Life would indeed be limited if we couldn't represent negative nunbers!

Obviously we have to have some representation of negative numbers, so 
let's say that a nunber on our hand is negative if we hold our thunb up. 
(In computer terminology that is saying that the highest bit - bit 7 - is 
on).

That means the highest number we can have is not as hicfi as before, 
because we can no longer say that holding all fingers up will show 255: 
for a start we have agreed that this will be a negative number. In fact, 
half the nunbers will be negative and half will be pos1tive(depending on 
whether the thunb is up or not).

The total nunber range possible on one hand if we allow negative nunbers 
will be from - 128 to +127. (Note that the total number range possible 
to be represented will still be 256 nunbers).

Now comes the crunch: when is a number with the thunb up a large positive 
nunber and when is it a negative nunber?

The answer, as strange as it may seem, is whenever you feel like it I

24.



We have to make a choice: nunbers can either be in the range of 0 to 255 
or in the range - 128 to +127. They can't be both at the same time! It 
is up to you, the programmer, to decide which convention you are using at 
a particular time.

All the instructions will work equally well, whether you choose to let the 
numbers contained in the registers or memory be all positive or positive 
and negative.

CHOOSING A REPRESENTATION:

We need a representation of negative nunbers, such that, all instructions 
will work and that when a number is added to its negative we get zero.

Let's think about the nunber which when added to 1 gives us zero: (we 
already know that the thumb - bit 7 - will be up)

0 0 0 0
17 7?

0 0 0 1
7 Î ? ?

0 0 0 0 0 0 0 0

Lets try the nunber 1 000 0001-i.e. the same as the
positive number but with the thunb up:

0 0 0 0
10 0 0

0 0 0 1
0 0 0 1

1 0 0 0 0 0 1 0

This is obviously not the right answer! We need a nunber that will take 
that carry from bit 0, and convert it to zeros all along.

You can try to do it yourself, and you will see that the only nunber which 
will give us the right answer is 1111 11111 (FFH in
hexadecimal).

25.



0 0 0 0 0 0 0 1
^-^1111 1111

(Carry) 0000 0000

Trying to think of a rule which will produce the negative, It looks as If 
though we have to get the opposite of the number and add one at the end.

Let's try this rule on another nunber, such as 3, say:

3 = 0 0 0 0 0 0 11
Opposite 1111 110 0
Add 1 -> 1111 1101 (FDH)

Let's add this nunber to 3 and see what happens:

0 0 0 0 0 0 11
1 1 1 110 1

(Carry) 0 0 0 0 0 0 0 0 It works!!

We have found a way to represent negative numbers 1
- 01 «> FF
- 02 » FE
- 03 => FD and so on.

The largest positive number Is
0 111 1111 • 7F •> 127 Decimal

And the negative of this Is
1000 0001 • 81 => -127 Decimal

The real test of this rule is to see if by applying the rule to a negative 
nunber we get back the positive again! Let's try it out on -3 rfiich we 
worked out above Is FDH.

Nunber 1111 110 1
Opposite 0000 0010
Add 1 => 0 0 0 0 0 0 1 1 » 3

This Is therefore a representation that works! We can apply 1t any 
nunber, whether positive or negative, and get the negative of that nunber.

26.



16 - Bit Negatives

Exactly the same reasoning applies to 16-bit nuntiers, except that it is 
the thunb of the high byte which is set to on to indicate the negativeness 
of the nuntier. (ie. bit 7 of the high byte).

Convention:

Remember that this is only a convention! You still have to decide at all 
times whether the nuntiers you are using are meant to designate nuntiers in 
the range 0 to 255 or numbers in the range - 128 to + 127.

Exercise

If 127 (0 1 1 1 1111) is the highest positive nunber which can be
represented in this convention, how would you represent - 128?
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PROPER NAMES FOR THE CPU'S
- - - - - - - HANbS AND FEET- - - - - - -

The Images we have been building up of hands, feet and boxes make the 
processes easy to visualise and are a good representation of what is going 
on, but computer buffs tend to look askance if you say things like 
"... and then the computer shifted its information from Its right hand to 
its left hand."

We will now give you the proper names for the CPU's hands and feet. So 
that when faced with that situation, you will be able to say:

"LD B.A I"

To start off with, computer buffs refer to the hands and feet of the CPU 
as "REGISTERS".

We mentioned earlier that the CPU has eight hands: these are called A,B, 
C,D,E,F......... In our world, the definition of a hand is something with
eight fingers.

The CPU also has two feet: these are named IX and IY. The definition of a 
foot is anything with 16 toes!

The naming of hands and feet Is fairly easy to follow becase if a register 
has only one letter in its name then 1t must be a hand (that is, contains 
8 bits), while if 1t has two letters in Its name then it must be a foot 
(that is, have 16 bits).

Did you notice the smooth transition from fingers and toes to bits? We 
will have you used to computer terminology 1n no time.

Actually the remaining two hands for the CPU after D,E,F,...are not named 
"G" and "H" as one would expect but "H" and "L".
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The conventional way to represent all these registers is as follows:

IY

A F

B C

D E

H L

IX

Notice that "F" is paired with"A", but after that the rest follow fairly 
naturally. The reason that registers are paired in this way is that it is 
sometimes possible to make a foot out of two hands!

After all, if the definition of a foot is something with 16 bits, then 
maybe we can fake it from time to time and use two B-bit hands to do the 
work of a foot. We therefore talk about “Register Pairs" such as BC, 
DE, and HL.

The reason the register pair "HL" was called “HL" instead of something 
like “GH" was to help people remember which of the two registers had the 
high nunber and which had the low nunber.

It's as if thou^i you wished to represent the numbers 0 to 100 on your 
hands and toes. You can easily set up you fingers to represent the 
numbers 0 throu^i to 10, and similarly with your toes (assuming that you 
are agile enough). One way you could denote the nunber 37 in this way 
would be to count off 3 on your fingers and 7 on your toes. But there has 
to be some agreement on viiich is the high nunber and vbich is the low 
number otherwise someone else might think you meant to represent the 
nunber 73.

The "H" in “HL” stands for hi<b and the “L" stands for low, so there is no 
chance of confusion - right?
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This diagram of register pairs also serves to indicate vdiich register in 
the other register pairs contains the hight number:

B in BC
D in DE

Because all the high and lows are treated in the same order.

The feet (IX and IY) also have a special name: they are called “Index 
Registers". This has a lot to do with the fact that they can be used to 
organise information in much the same way as a book index is organised.

OK, now that you understand the terminology, here are some special points:

FLAGS:

Please note that ”AF" is not usually treated as a register pair. The "F" 
in this case is used to denote "Flag Register", and we will be dealing 
with this in a separate chapter.

ALTERNATE REGISTER SET:

I thought that this might be a nice place to mention that the CPU also has 
a spare set of hands!

Not really so much a spare set of hands (all right, alternate register 
set, if you want the proper terminology), as a spare set of work gloves.

It's as 1f though you had a set of stiff plastic gloves, so stiff in fact 
that they retained the shape of your hand when you took them off. If you 
had counted off the nunber 3 on your hand for example and took off your 
gloves, then the glove would still retain the shape of a hand with the 
nunber 3 counted off!

You can no doubt think of uses for such gloves immediately - you could 
make a note of a nunber while wearing one set of gloves, swap gloves
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and the old number would still be there when you needed on the other set 
of gloves)

The other glove 1s there If you want to use 1t and It won't forget the 
Impression of your hand when you took It off. Unfortunately you can't 
just glance down and see what was the number you had retained there. Nor, 
naturally, can the glove perform any calculations without a hand Inside 
the glove)

You actually have to swap gloves again to be able to use whatever 
Information the gloves retain.

The CPU has a spare set of gloves for each pair of hands (but not for feet 
- who ever heard of gloves for feet?) But they are not Interchangeable 
between hands, just as you can't put a left glove on a right hand.

The representation of all the registers Is now therefore:

Is for, while the spare set Is always Indicated with the dash symbol.

A - F <««=> A' - F*
B - C <«««> B' - C
D - E D' - E'
H - L <===> H' - L'

IX
IY

Whichever set of gloves you are wearing has the same name as the hand 1t

The Instructions still relate to what the hands are doing, not to which 
pair of gloves you have on. So although we show the spare set with a 
dash, there are no Instructions such as LD A', 1.

The only Instructions Involving the alternate register set are of the 
"swap gloves now" type. For example:

1. LO A, (Box fl) load A with contents of 
box fl

2. EX AF,AF' short for exchange - 
1e. swap gloves on AF

3. LD A, (Box f 2)

4. EX AF,AF' another exchange

5. LD A, (Box #3)
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You will note that in the previous 5 instructions there are no 
instructions which have specifically affected the alternate register set 
but we have without doubt altered their contents.

This example is designed to illustrate the concept of the alternate 
register set. Try to work out what is happening. Do you know what will 
be in register “A" after each instruction?

For simplicity's sake, Let's assume that the contents of the three boxes 
are as follows:

(Box #1)
Box #2 

(Box #3)

1
2
3

after each instruction:Then the following is what happens

REGISTER A REGISTER A'

1. 1 Not known
2. Not known 1
3. 2 1
4. 1 2
5. 3 2

Really quite simple isn't it?
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THIS IS ALL VERY WELL, BUT
HOW DO I RUN A MACHINE LANGUAGE PROGRAM?

You have probably heard enough about the CPU and hexadecimal notation, but 
all this seems so Irrelevant. It doesn't explain how you actually (R*U*N) 
a machine language program.

The Sinclair ZX80 and Sinclair ZX81 are actually running machine language 
programs all the time I (when they are on). It's Just that you are not 
aware of It. Even when you're not doing anything, just watching the 
screen, trying to think of what to enter as the first line of your 
revolutionary Basic program, the Sinclair computer Is busy running under 
the control of a machine language program.

This program 1s one that 1s stored In the "ROM" chip and Is referred to as 
'The Operating System'. For example the part of the program that Is 
running when you're sitting there looking at the screen does the following 
things:

Scan the keyboard for entry
Note that no key has been pressed
Display the present screen (empty)

Incidentally this Is why the screen will flicker when you finally do press 
a key because the CPU goes on to trying to figure out what to do now that 
you pressed something. It can't do two things at once, and the one that 
suffers Is the display of the screen.

(Except In the ZX81 SLOW mode - This Is because there Is another little 
fellow In the hardware who taps the CPU on the shoulder every so often and 
reminds the CPU that It's time to display the screen again. Really).

Even when you are running a 'Basic* program, the CPU Is still under the 
Instruction of the machine language program. This program 1s of the 
'INTERPRETOR' type: It looks at your next Basic Instruction, converts It 
to machine language, executes that part of the program, and then returns 
to Interpret the next Instruction.
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All this stops being true when you run your own machine language program!

Total freedom from the operator system! The use of the 'USR' function 
hands over total control of the CPU to whatever commands you have placed 
at the USR address.

This can be pretty terrifying as you could lose everything stored In 
memory if you lose control. One error and you will have to turn the 
Sinclair off and start again from the beginning.

There are no error messages to catch what you have done, no syntax 
checking for incorrect statements - so if you make the slightest error, 
the hours of work you put in to enter your program could be lost!

At the end of this book we have included a 'BASIC1 program which will 
allow you to enter and edit machine language programs. Once you have 
entered this program on your Sinclair, store It on tape as it Is more than 
likely that you will lose control of your machine language program at 
least once.

On the other hand do not be afraid to experiment - you cannot damage the 
computer with any machine language program you enter. The worse that 
happens Is that you may have to turn the Sinclair off and on again.

We will now just whet your appetite with the very simplest possible 
machine language program. Load the 'BASIC "Machine Language Editor* 
found at the back of this book and press "RUN".

The program will ask you for a starting address where you wish to enter 
your program. Choose an address beyond the end of the space used by the 
editing program and the variables, such as 17300 for the ZX 80, and then 
press "NEW LINE".
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(Users with Additional Memory could choose any address beyond the space 
occupied by the program, the display space and the variable storage, such 
as 19000, say.)

Note ZX 81 : IK users - due to the extreme space limitations in the ZX 81 
version, there 1s effectively no free memory after the machine code editor 
program has been entered.

Nonetheless 1t is possible to enter and run machine language programs by 
using the printer buffer area which starts at 16444.

Note that in the ZX 81, whether additional memory is available or not, all 
code poked into free memory will be cleared between 'RUN's. (Even using 
'GOTO does not solve the problem).

The same is true for code poked into the printer buffer area.

Once you have entered the machine code editor program and pressed (RUN), 
the screen will now show:

MEMORY CODE

16444 00 (ZX 80 users use 17300)

Now enter "C" and “9" then press “NEW LINE", the screen should now show:

MEMORY CODE

16444 00 C9 (ZX 80 -> 17300)

CHANGES?
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What the screen display is showing you is the old value at location lb444 
( = 00 ), then the new value at location 16444 ( • C9 which you have just 
entered) and then asks you whether you want to make any changes to what 
you have just entered.

At this stage you do not want to make any changes, so just press "NEW 
LINE". (To make changes enter "Y" or "YES" or "YEACH" or any other word 
that starts with "Y").

Congratulations: you have just entered a one instruction machine machine 
language program.

What the instruction "C9" means is : RETURN.

It's a little like riding a bicycle for the first time: you really want 
to be let loose on your own, but as soon as you go a little way you want 
to “RETURN" to the safety of earth (or operating system as the case may 
be).

So after you pressed "NEW LINE" above, the program will ask you:

CHANGES? MORE?

The program wants to know if you have any other code you want to enter. 
Again it's looking for a positive answer and pressing "NEW LINE" will 
allow you to exit from the program.

The editing program has now finished.

Now we run the machine Language Program:

The program will ask you for the starting address of your machine language 
program. Enter the starting address where you "POKE"d the machine codé:

16444 (OR 17300 FUR ZX 8Ü USERS)

(Users who chose a different address should make the appropriate change).
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Press "New Line" for the running of your first machine language program.

What happened? Why did the screen come up with 16444 or 17300 or whatever 
address you used as the start?

The answer lies in the way the Sinclair operating system (yes the same 
one) deals with the "USR" function.

When the operating system encounters the "USR" function it loads the 
address the user specified into the register pair HL for the ZX 80 - in 
this case 173000.
The value of "USR", as in

Let A = USR (17300)
is the value of the register pair HL on return from the subroutine.

Since our short machine language program did nothing but go and return, 
the value of HL was unchanged, and the statement

Print USR (S173OO)
Naturally gave the answer 17300!

This feature of the "USR" function will prove to be a very useful one as 
it will enable us to monitor what is happening during the running of a 
machine language program.

In the case of the ZX 81, it is the value of the "BC" register pair Milch 
is returned by the 'USR' function, but the concept is exactly the same.

Let us enter the following machine language program: (press “Run" if you 
still have the listing of the "Maching Language Editing Program" on the 
screen)
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MEMORY CODE

ZX 80 USERS ONLY:

17300 C9 ZB
17301 00 C9

Changes? More?

The way to enter this short two-instruction program is as follows:

Enter "17300" in response to starting address query
Enter "28“ followed by “New Line" when the screen shows 

“17300 C9"
Enter “C9" followed by “New Line" when the screen shows 

"17301 00“
Enter "New Line" in response to “Changes?“ and to “More?“

The enter “17300“ in response to "Start For USR?" and press “New Line".

This tine the result will be 17299! This is because the instruction "28" 
is "DEC HL" (abbreviation for decrease value of HL by 1).

ZX 81 USERS ONLY:

Enter your program in exactly the same way as above, but change the code 
to be entered to the following:

16444 00 08
16445 00 C9

Start for USR? 16444

The concept is again the same, but this time we use an instruction which 
relates to the "BC“ register pair rather than to the "HL" register pair - 
'08' means 'DEC BC'.
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You will have noticed a few things about this machine language editing 
program:

The first colurm under the heading “Code" shows what is in that 
location before you make your changes.

The second column under "Code" shows what is in that location after 
you have tried to make your changes.

The question "Changes?" only came up after you entered "C9" into a 
location

The following features are some that you would not yet have discovered:

Pressing "New Line" after being shown the contents of a location 
leaves that location unchanged.

The question "Changes?" will also come up after 20 locations have 
been displayed. (ZX 81 users program has been designed to show 
only 10 locations due to the memory limitations of the IK ZX 81).

Should you answer "Yes" to the question "Any Changes?" then the screen 
will clear and the program will start again at the first location. The 
first column under Xode” will now show the contents of the locations as 
they now exist (i.e. after your changes).

If you have no changes to make, just keep entering "New Line" until you 
get to the location you want to change, and changa the contents in the 
same way that you have already done.

If you answer "Yes" to the question "More?" the screen will clear and a 
new set of locations will be displayed.
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“NOTE:**

The last location of the previous page will now be displayed at the top of 
the page. Don't make the mistake of entering something new at location if 
you have already got what you want therel

Experiment with looking at different locations and trying to change the 
contents of different memory locations. Remember you can't hurt the 
system - the worse that can happen is your screen will go black and will 
have to turn off the Sinclair and turn it on again.

If you do not want to (R*U*N) a USR program after changing or looking at 
the contents of memory, enter "XX" as reply to “Start for USR?"

EXERCISE:

Try entering “0" as your starting address (beginning of RUM).
What happens when you try to change the contents of the memory locations? 
Why?

EXERCISE:

Try examining the first line of the screen display.
What happens when you change the contents of one of the locations?
What happens when you enter "76“? Why?
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INSTRUCTIONS FOR ONE-HANDEO

LOADING OPERATIONS

Mnemonic Bytes Time Effect on Flags
Taken C Z PV s N H

LD Register, Register 1 4 - - - - - -
LD Register, Number 2 7 - - - - - -

LD A, (Address) 3 13 - - - - - -
LD (Address), A 3 13 - - - - - -

LD Register, (HL) 1 7 - - - - - -
LD A, (BC) 1 7 - - - - - -
LD A. (DE) 1 7 - - - - - -
LD (HL), Register 1 7 - - - - - -
LD (BC), A 1 7 • — • - - -
LD (DE), A 1 7 - - - - - -

LD Register, (IX+D) 3 19 - - - - - -
LO Register, (IY+D) 3 19 - - - - - -
LD (IX+D), Register 3 19 - - * - - -
LD (IY+D), Register 3 19 - - - - - -

LD (HL), Nunter 2 10 - - - - -
LD (IX+D), Number 4 19 - - - - - -
LD (IY+D), Nunter 4 19 - - - - - -
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COUNTING OFF NUMBERS

ON ONE HAND

Since everything in the Sinclair CPU is designed around 8-bit hands or 8- 
bit memory locations, it is obviously of major importance to learn how to 
count off nunbers on one's hands.

Just which operations are allowed and how easy they are to do is the key 
to machine language programming.

Imagine for a moment that you are the CPU: obviously like most people, you 
are right handed and there are things you can do with your right hand that 
you are not quite so adept at with other hands. The equivalent hand on 
the CPU is the "A" register.

This is the only one where you can do the complicated tasks of adding and 
subtracting.

On the other hand (so to speak if you'll forgive the pun) you can 
temporarily store what you have in your right hand onto any other hand and 
vice versa.

Computer boffins refer to this as Register Addressing.

But that is just a big name for saying transfer information from one 
register to another. Examples are:

LU A.B 
LD H,E 

and so on.

Please note the terminology inolved: "LD“ means "Load", means “With", 
and the mnemonic (abbreviation) instruction is read in the same order as 
an English sentence.
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We would thus read out loud something like:
LD A,B

as "Load A with B". The next example would be read as "Load H with E".

We can swap from one hand to any other hand as we mentioned earlier. The 
exception that proves the rule 1s the "F" register 4iich we should not 
think of as a hand at all. It is as we mentioned earlier the "Flags" 
register and does not store nunbers in the normal sense.

Apart from that exception you can manpulate ary hand to any other hand. 
Even the seemingly stupid instruction “LD A,A" is permitted!

A short shorthand of this is "LD r,r" where "r" represents any 8-bit 
register except "F".

O.K: we now know we can shuffle information between hands, but that's not 
going to do us much good without some original information on those hands.

The second way that we can count off numbers on our hands is for us to 
specify how many we want the CPU to count off on which hand!

For example, count off 215 on hand "D". I am sure you know enou^i about 
the mnemonics by now to be able to write this as:

LD D,D7
(D7 is the hexadecimal representation of 215).

This is called IMMEDIATE ADDRESSDSING.

(Pretty obvious isn't it?).

Once again you can do this with any of the registers, with any numbers 
whatsoever.
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(The limitation being of course the size of the nqmber you can specify 
with 8 bits: 0 - 255).

A short shorthand of this is "LD r,n* where “r" Indicates any register and 
"n" any number. The previous convention of one letter »' 8-bits still 
applies.

Now we're staring to get someplace: we as programmers can now specify 
which numbers get loaded onto which registers and we can spin them 
around. But we still haven't learnt how to put any of these numbers away 
in memory locations, and there are only so many registers!

As soon as we leave the internal registers the CPU 1s no longer 'At 
Home'.We therefore call putting something away in a memory location 
“External Addressing".

We showed you very briefly an example of this when we were doing the time 
difference exercise:

LD A, (Box #3)
The general mnemonic for this Is:

LD A, (nn)

Don't forget that In our shorthand the brackets imply “The Contents Of".

Note two things about this:
1. You can only do It with Register A
2. You have to supply the number of the box as a 16-bit number.

The reverse instruction Is also valid. This Is one thing you will notice 
about the Z80 - there 1s a certain symmetry about the Instruction set:

LD (nn),A

Do notice that these Instructions only apply to Register “A" - there will 
be times when you will wish for such Instructions Involving the other 
registers.
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Let us pause here for a second and consider what these two instructions 
actually mean and do for us.

In the first place, the maximum nunber that can be defined by the nunber 
nn is a little over 64,000. This means that the maximum memory possibly 
reached by this instruction is only 64KI In fact on the Sinclair 
machines, because of the hardware construction everything over 32K is not 
available to the user.

This means that all the memory - ROM, Program, Display, and free memory - 
have to fit in 32K:

The first 8K are reserved for the ROM.
The second 8K are a copy of the 1st 8K as a result of the hardware 
desi gn
The last 16K are the maximum RAM possible.

The instruction "LD A, (nn)" - which is read as “Load A with the contents 
of location nn" - is a very powerful instruction. It enables us to "Read“ 
the contents of any memory location, whether in ROM, or RAM.

You can use this instruction to explore to your heart's desire, even to a 
location where there is no memory - e.g. to try to see what is beyond the 
IK RAM memory even if you do not have additional nemory. You will be 
surprised - 1t is not all zeros I

The reverse instruction "LD (nn),A™ - which is read as “Load the contents 
of memory location nn with A" - will attempt to write to ary memory 
location as well, but will be restricted by the physical limitations:
You can't write to a location that can't store that information, such as 
memory beyond the size of your system or into ROM space.

Another consequence of this Instruction is that we have to know at the 
time of writing the program which memory location we wish to examine or 
write into. The abbreviation "nn" means a definite number - e.g. 171U0 - 
and not a variable.
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You can't use this instruction in the machine language equivalent of a 
"FUR - NEXT" loop. The main use for this instruction is therefore for 
setting aside particular memory locations as variable storage. E.g. 
define 17000 = Speed

17001 = Height
17002 = Fuel Left

In a lunar lander type program.

You could therefore plan a program where you got the fuel left, decreased 
it, and stored the new amount of fuel back into that location. You will 
know at the time of writing your program the address of that memory 
location which serves to act as a variable.

Let us be clear about this. Location 17UO2 is not a variable. It is only 
a memory location which you use to store certain information.

Mhen writing your program you would therefore write something like
LU A,(Fuel)

and when you or the assembler got to specifying the actual machine code 
for this instruction you would replace "Fuel" by the hexadecimal address 
of the memory location you specified.
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But what if we don't know the exact address of the memory location where 
the information we seek is. Suppose we can only calculate where that 
information is going to be? Because we need 16-bits to specify the 
address of any memory location, we would need to store it in a 16-bit 
register: this means one of the register pairs BC, DE, or HL, or one of 
the Index Registers IX or It.

One way we can do this is to have one of the register pair contain the 
address of the memory location. Because the register contain the 
information and because we don't have the address directly we call this 
form of addressing Register Indirect Addressing.

The imemonic abbreviations for these are
ID r,(HL)
LD A,(BC)
LD A,(DE)

The English reading of these instructions is
"Load the register with the contents of the memory location 
pointed to by HL"
"Load A with the contents of the memory location pointed
to by BC"
"Load A with the contents of the memory location pointed 
to by DE".

Note that by using “HL" as the pointer to our memory location we can load 
to any register - even H or L, as strange as that may sound - but that 
using BC or DE we can only load into the A register.

This is because the HL register pair is the favoured register pair in the 
same way that the A register is the favoured single register.
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Once again there is a symmetry to these instructions and we can store 
information into memory locations in a similar way:

LD (HL),r
LD (BC),A
LU (DE),A

This is still called “Register Indirect Addressing“ whichever direction 
the information flows in.

Alternatively we could use the Index Registers IX and IY to point to the 
memory location. This is where we will find out why they are called Index 
Registers and I am sure it will come as no surprise to you that this kind 
of pointing is called INDEXED ADDRESSING.

The reason that they are called Index Registers is that we can use them as 
pointers to an entire table of items, such as the 1st item, the 10th item, 
the 137th item and so on.

The short shorthand is:

LD r,( IX + d)
LD r,( IY + d)

“r" is again any register, and ”d“ is the “displacement“ fran the address 
pointed to by IX or IY. (Don't <pt the use of “d" confused - we don't 
mean register "D" but d = displacement).

The number "d" is an 8-bit nuirtser rfiich has to be specified at the time of 
programming and cannot be a variable. This is the weakness of this 
particular instruction and means that its use, is usually limited to 
reading and writing tables containing data.
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The symmetrical Instruction is also available:
LU (IX + d),r
LU (IY + d),r

If this particular mode of addressing sounds a little complicated, don't 
worry: it is not a very commonly used Instruction and you are unlikely to 
need it in your first few programs.

The Z80 chip used tn the Sinclair Computers is nothing if not versatile, 
and you can combine some of the ways of loading numbers we described 
above.

For example, you can combine immediate addressing (i.e. specifying the 
nuirber you want loaded) with external addressing (i.e. specifying the 
address to be loaded by using a register pair).

This is called - surprise,surprise - "IMMEDIATE EXTERNAL ADDRESSING".

Unfortunately you can only use the HL Register Pair and the short 
shorthand is therefore:

LD (HL),n

This is useful as you can directly fill a memory location without first 
having to load the value 1n a register.

A similar combination is possible with the Index Registers, called 
"IMMEDIATE INDEXED ADDRESSING".

This is of more limited use, and the abbreviated form for these 
instructions are:

LD (IX + d),n
LD (IY + d),n
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USING THESE INSTRUCTIONS IN 
A MACHINE LANGUAGE PROGRAM

Let's try to put some of these "LU“ instructions into practice.

Me know from the previous chapters that after returning fron a 'USR' 
machine language program the value of the 'USR' is the contents of HL. 
Let's run the following program:

MEMORY COPE

FOR ZX 8U USERS:

173UU 00 2E
17301 00 00
17302 00 C9

Changes? More?

FUR ZX 81 USERS:

16444 00 ÜE
1644b 00 00
16446 00 C9

From now on, we will no longer be showing you machine language programs in 
this way as it is a cumbersome method and does not allow you, the user, to 
understand the point of the program.

We assume that by now you have enoucj) familiarity with the basic "Machine 
Language Editor" to be able to enter program.- We will therefore be 
showing all of our programs as follows:

ZX 80 Version 1 ZX81 Version

2E 00 LO L ,0 I OE OU LO C,U
C9 Ret 1 C9 Ret

This notation gives you the machine codes on the left side and the
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Z80 assembly imemonics in the right hand column. It also indicates very 
clearly which instructions require only a single byte (such as return) and 
which instructions require 2 bytes,etc. (Some instructions on the ¿80 can 
take up to 4 bytes 1).

The other point is that we shall try to make all our program independent 
of origin so that it does not matter what you specify as your starting 
address.

Nonetheless remember that these programs are designed to be entered with 
the "Machine Language Editor" program at the back of the book or any other 
loading program you may desicyi yourself.

Before running this program what do you expect the result to be?
The program sets the "L" register in the register pair HL to zero, and you 
know that HL starts off with the address of the program, say 17100.

Will the answer be ZX 80: ZX81:
A. 0000 A. 0000
8. 17300 B. 16444
C. 16896 C. 16384

Now run the program. Was the answer what you expected it to be?

If you are unclear about why the answer was what it was go back and reread 
the chapter on "The Way Computers Count".

Now try running the following program:

ZX 80 Version I ZX81 Version

26 00 LD H,0 1 06 00 LU 8,0
2E 00 LO L,0 1 OE 00 LO C,0
C9 Ret 1 C9 Ret

This will give you the expected result of 0 as HL=O (both registers H and
L have been set to 0) or BC=O, depending on which program you run.
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EXERCISE:

You might like to try a few fancy tricks, such as loading A with a number, 
transferring to L, setting H to 0 and so on.

EXERCISE:

ZX 80 users only : an interesting point to think about - what happens when 
you set H to 200 and L to 0?

200 * 256 + 0 = 51,200
You won't get the answer of 51,200.
Why?
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FLAGS AND THEIR USES

Flags are those nice buntings you can wave on state occasions ... wrong!

In Machine Language, the word “Flag" implies "Indicator" - a flag is 
something you put up if you wish to indicate to someone else that a 
certain condition exists.

The obvious example is in boating where you rig up a flag to Indicate 
distress, country, piracy or whatever.

The reason we use flags in machine language is to give the programmer 
information about the status of the nuntier in the CPU's right hand (the 
'A' Register) or information about the last calculation just performed.

You will remember that one of the CPU's registers is rfedicated to be a 
Flags Register. You may also have noticed at the start of the last 
chapter a table suninarising the various instructions to be discussed in 
that chapter, and that part of that table was devoted to the effect each 
instruction would have on the flags. (Fortunately none of the 
instructions discussed, in the last chapter affected any of the flags).

The flag whose functioning is easiest to understand is the ZERU FLAG.

This flag will be run up the flag-pole if the contents of the 'A' register 
is zero.

There are many important decisions which will depend on whether 'A' is 
zero. Note that the zero flag is either on or off. You can't have an in
between result (shade of 'a little pregnant') so that you would only need 
one bit to define the zero flag.
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The same is true for all the other flags as well. They are either on or 
off and require only one bit.

THE DIFFERENT KINDS OF FLAGS:

The "F" register is a regular 8-bit register and could therefore 
accomodate 8 different flags. In practice however the designers could 
only think of 6 flagsl

S I - H - P/V N C
♦ I \

SIGN FLAGI '
ZERO FLAG

HALF-CARRY FLAG \

I \(PARITY FLAG '
(OVERFLOW FLAG

i I
SOBTRACT FLAG

CARRY
FLAG

Actually the designers thought of seven flags, but decided that one bit 
could serve as both flags: the parity/overflow flag.

Let us now look at each of these flags in detail:

ZERO FLAG:

This is the flag we have already discussed above. Its application 1s 
obvious, and the flag is usually set after an arithmetic operation as it 
serves to indicate the contents of the 'A' register.
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Note carefully however that it is possible to have the 'A' register 
contain 0 and for the zero flag not be set. This could easily happen by 
using the

LI) A,0 
instruction.
We have mentioned above that none of the 8-bit load instructions had any 
effect on any of the flags.

The zero flag is also set if the result of the “Rotate and Shift" group 
of instructions results in a zero.

As well, the zero flag is the only visible result of some testing 
instructions, such as the "Bit Testing" group of instructions, in those 
cases the zero flag is put on if the bit tested is zero.

SIGN FLAG:

The sigi flag is very similar to the zero flag and operates on very much 
the same set of instructions (with the major point of departure being the 
"Bit Testing” group where the concept of a negative bit is somewhat 
meaningless in any case).

In the case of the sign flag, it will be set if the result of the 
arithmetic operation is negative.

CARRY FLAG:

This is one of the more important flags available in assembly language, 
for without it the results of assenbly language arithmetic would be 
totally meaningless.

The point to remember is that assembly language instructions always refer 

to either 8-bit or 16-bit numbers.
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This means that the nuntiers we are dealing with can be either : 
8-bit »»> 0 - 255

16-bit »=> 0 - 65536
Consider the situation where we subtract

200
201

Result • 2551

This is a direct consequence of only having a limited nunber range 
available, and the same thing can obviously happen with 16-bit numbers.

The carry flag can also be set by addition operations.

It is therefore convenient to think of the carry bit as the 9th bit of the 
'A' register:

No. *C' Number in Bit Form

132 - 1 0 0 0 0 1 0 0
♦ 135 - 1 0 0 0 0 1 1 1

267 1 0 0 0 0 1 0 1 1

But as we do not have 9 bits, the 'A' register would contain the nunber 
'Decimal 11' and the carry would be on (i.e. - 1).

You can see that on subtraction borrowing from a 9th bit would leave a '1' 
there as well.

MACHINE LANGUAGE EQUIVALENT OF “IF ... THEN ..."

The equivalent in a basic program is:

If A=0 then

where what follows can be 'Let .
or 'Goto
or 'Gosub
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Exactly the same kind of decision can be programmed in Machine Language 
(except for the 'Let Instead of saying "If A=0“, we merely look at
the zero flag: If it is on, then we know A=0.

The three flags we have been considering to date are in the main the only 
ones which allow us to execute a branch or a choice in the next 
instruction to be executed.

The format of such instruction is as follows:
For example:

JP cc.End
Where 'JP' is the mnemonic for 'Jump' and 'Lnd' is a convenient label.
The instruction is read in English as “Jump on condition cc to end”.

The condition “cc" could be any of: 
Z ( •> Zero)

NZ ( => Not Zero) 
P ( => Positive) 
M ( => Minus) 
C ( => Carry Set)

NC ( •> No Carry)

The other three flags tend not to be of so much use in every day 
programming. They are:

PARITY / OVERFLOW FLAG:

This flag acts as the parity flag for some instructions, and as the 
overflow flag on others, but there is rarely any confusion as the two 
types of operations do not commonly occur together.

The parity side of it comes into effect during logical operations and is 
set if there is an even number of bits in the result. We deal with this 
in greater detail in the chapter on logical operations.
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The overflow is a warning device that tells you that the arithmetic 
operation you have just performed mey not fit into the 8-bits. Rather 
than actually telling you that the result needed a 9th bit, this tells you 
that the 8th bit changed as a result of the operation!

In the example above, adding 132 and 135, the 8th bit was *1* prior to the 
addition and '0' afterwards, so that the overflow would ha« been set. 
But the overflow would also be set by adding:

64 01000000
+ 65 01000001

129 1 0 0 0 0 0 0 1

SUBTRACTION FLAG:

This flag is set if the last operation was a subtraction!

HALF-CARRY FLAG:

This flag is set in a manner similar to the carry flag but only in the 
case of an overflow or borrow from the 5th bit instead of from the 9th 
bit!

Both the subtract flag and the half-carry flag are of use only in "Binary 
Coded Decimal" arithmetic, and we deal with these flags in the chapter on 
“BCD Arithmetic".
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COUNTING UP AND DOWN

In the last chapter we examined the concept of flags, and in the chapter 
before we found out how the CPU gets certain nunbers onto its fingers and 
toes.

Let us now examine the simple possible way to manipulate nunbers on one's 
fingers: we can increase the number represented on our fingers or we can 
decrease the nuntoer represented.

This is a pretty rudimentary arithmetic, but it gets beyond loading 
specific numbers onto your fingers. The action of counting up is 
essentially: whatever number you have on your fingers,increase by one.

This can be used in such ordinary situations as census taking or 
monitoring the traffic at a particular intersection.

CUUNT1NG UP

It is possible on the Z80 to increase the count on the fingers of every 
single hand the CPU has. This is what we mean by the general mnemonic:

INC r
"INC" is read in English as “Increase" and is therefore fairly self- 
explanatory.

It is also possible to increase the count held on the toes of any of the 
feet (including the register pairs, which are not really feet, as we saw).

This increasing of the count on our toes is written as:

INC rr
INC IX
INC IY
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Where "rr" denotes a register pair, such as 'BC', 'DE', or 'HL'.

Note again the simple way we have of denoting which operations are using 
8-bit nunbers and which are using 16-bit nunbers:

The 8-bit numbers are denoted by a single letter, while 
The 16-bit nunbers are denoted by two letters.

But the “Counting Up" instruction is in fact even more powerful than this 
might indicate. It is possible to increase the count of. any memory 
location if we are able to specify its address using the Index Registers 
or the 'Favoured Register Pair', HL:

INC (IX + d)
INC (IY + d)
INC (HL)

(Where 'd' is the displacement - not the Registerl)

IMPORTANT NOTE:

Remember carefully our convention of reading brackets: 
Brackets »«> 'Contents of'

This is very important as there is a lot of similarity between the 
instructions

INC HL
INC (HL)

But a world of difference in their execution.

The first would be read as "Increase HL" while the second would be read as 
"Increase the contents of the location whose address is HL". (This second 
reading is often abbreviated to "Increase the contents of HL".)

As long as you remember the rules of the menmonic abbreviations you will 
be saved from this kind of confusion. Let us examine h(M each operates, 
and let's assume that H » 16396.
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INC HL: Look at HL. Increase the count on its fingers by one.
Result: 
HL = 16397

INC (HL): Look at HL. Find the memory location referred to by this
nunter. Increase the count in that location by one. 
Result: 
HL ’ 16396
(16396) •= (16396) + 1

These are significantly different operations. Note also that tfiile 'INC 
HL' is an instruction acting on a 16-bit number, 'INC (HL)' is an 
instruction which acts on an 8-bit nunber only - the nunber stored in 
location 163961
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DECREASING THE COUNT:

The symmetrical nature of the Z80 Instruction set would almost certainly 
ensure that everything you can Increase you can also decrease, and this 1s 
Indeed the case:

DEC r 
DEC rr 
DEC IX 
DEC IY 
DEC (HL) 
DEC (IX + d) 
DEC (IY + d)

The mnemonic "DEC" Is read In English as “Decrease", and the same careful 
attention to the use of brackets must by applied here.

EFFECT ON FLAGS:

Because the Increase or decrease Instructions which operate on 8-b1t 
numbers affect every flag except the carry flag, this 1s a very good place 
to review the operation of the flags.

(Note that the Increase and decrease Instructions which operate on !6-b1t 
numbers do not effect any of the flags I)

carry Into or a borrow from bit 4 of the 8-b1t 
number.

SIGN: This flag will be set (-1) If bit 
the 8-blt result Is 1.

7 of

ZERO; This flag will be set (■!) If the 
result Is zero.

8-b1t

OVERFLOW: This flag will be set (-1) 1f the contents of 
bit 7 of the 8-b1t number Is changed by 
the operation.

HALF-CARRY ¡This flag will be set (•!) If there 1s a
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NEGATE: This flag is set if the last instruction
was a subtraction. Thus it is not set 
(=0) for “Inc", and set (=1) for “Dec".

SUGGESTED EXERCISES:

Use the "Load", "Inc" and “Dec" youp of instructions to return the 
numbers you want as a result of the USR' operation.

This will give you familiarity with these instructions.
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INSTRUCTIONS FOR ONE-HANDED 
ARITHMETICAL OPERATIONS

FLAGS NOTATION:

MNEMONIC BYTES TIME 
TAKEN

EFFECT ON FLAGS 
C Z PV S N H

Add Register 1 4 f f # < Of
Add Number 2 7 f f # 101
Add (HL) 1 7 f f f (Of
Add (IX+d) 3 19 Iff (Of
Add (IY+d) 3 19 f f f f Of

ADC Register 1 4 Iff Mf
ADC Number 2 7 f * » (Of
ADC (HL) 1 7 Iff fOf
ADC (IX+d) 3 19 Iff f Of
ADC (IY+d) 3 19 i H f 0 f

Sub Register 1 4 f f f fit
Sub Number 2 7 HI f 1 f
Sub (HL) 1 7 f f f f 1 f
Sub (IX+d) 3 19 HI fit
Sub (IY+d) 3 19 III f I f

SBC Register 1 4 fff f 1 f
SBC Number 2 7 III # 1 f
SBC (HL) 1 7 fff f 1 f
SBC (IX+d) 
SBC (IY+d)

3
3

19
19

III fit
III fit

CP Register 1 4 Iff f 1 f
CP Number 2 7 fit III
CP (HL) 1 7 III f 1 #
CP (IX+d) 3 19 fff f 1 1
CP (IY+d) 3 19 fff f 1 f

f Indicates 
0 Indicates 
1 Indicates 
- Indicates

flag Is altered by operation 
flag 1s set to 0
flag Is set to 1
flag Is unaffected
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ONE HAND ARITHMETIC

One hand arithmetic is just our reminder that all of these operations in 
this chapter involve only 8-bits and all of them must be carried out 
through our right hand.

It seems that only our right hand knows how to add or subtract I

This fact is so ingrained in the Z8O machine language menmonics that the 
abbreviation 'A' is even omitted. For example to add 'B' to 'A*, we would 
normally expect to see

ADD A,B
But in fact the mnemonic is

ADD B.

Despite this limitation on arithmetical instructions, the Z80 languacp is 
very versatile in what we can actually add to whatever nunber we have on 
our right hand:

Add r 
Add n
Add (HL)

Add any single register to A 
Add any 8-bit number to A

Add (IX + d)

Add the 8-bit nunber in the box 
whose address is given by HL

Add (IY +d)

Add the 8-bit nunber in the box 
whose address is given by IX+d 
Add the 8-bit nunber in the box 
whose address is given by lY+d

You can appreciate that this is an extremely versatile range of possible 
numbers we can add to whatever number is stored in A - aqy nunber, any 
register and virtually any way we care to define a memory location.

The one that is missing is
Add (nn) 

where we define the address in the course of the program.
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As a result the only way to get such an Instruction would be to write:
LD HL,nn 
ADD (HL)

Note also the favoured role of the HL register again. We cannot specify 
the memory location using the BC or DC register pairs.

The other limitation implicit in all this is also the limitation of 8-bit 
nuntiers:

LD A.80H
ADD 81H

will give a result of only 1 in 'A' but the carry flag will be set to 
indicate the result did not fit in.

(If the hexadecimal arithmetical confuses you, it's really just the same 
as ordinary arithmetic but you go to 'F* Instead of stopping at '9':

80
+ 81

101H as 8+8=16 ==> 10H)

There is therefore the very useful instruction “ADC" which we read as "ADD 
WITH CARRY".

This is exactly the same as the "ADD" instruction, with the same rang» of 
nuiribers which can be added to 'A', except that the carry is added on (if 
it is set).

This makes it possible to add nunters yeater than 255 together, by a 
chaining operation:

E.G. To add 1000 ( i.e. 03E8H ) to 2000 ( i.e. 07DOH ) and store the 
result in BC:

LD A,E8H ¡Lower Part 1st No.
ADD DOH ¡Lower Part 2nd No.
LD C.A ¡Store Result in C
LD A,03H ¡Higher Part 1st No.
ADC 07 H ¡Higher Part 2nd No.
LD 8, A ¡Store Result in B
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After the first addition ( E8 + DO ) we will have the carry set ( because 
result was greater than FF ) and A containing 88 (check this for 
yourselves!).

The second addition ( 3 + 7 ) will yield not OAH (=■ 10 Decimal) as might 
seem on the surface but OBH (• 11 Decimal) because of the carry.

The final result is therefore 0BB8H - 3000! This chaining could go on to 
take care of any size nuiiber rather than simply in a register pair.
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8-Bit Subtraction:

This is exactly the same as 8-bit addition. Two sets of commands exist, 
one for ordinary subtraction, and one for subtraction with carry:

SUB s - SUBTRACT S
SBC s - SUBTRACT S WITH CARRY

The notation 'S' is meant to denote the same rang» of possible operands as 
for the Add instruction.

COMPARING TWO 8-BIT NUMBERS:

Let us step back from machine language for a moment and consider exactly 
what 1t is we mean when we compare two numbers:

We know what happens when the two nunbers being compared are the same - 
thqy are 'equal'. One wqy to denote this in an arithmetical format would 
be to say that the difference between the two nunbers was zero.

What if the number being compared is greater than the first number 
(comparison does imply relating two nunbers: we compare a nunber with what 
we already have on our fingers). Then the result after subtracting the new 
nunber will be negative.

Similarly if the new number is smaller, then the difference will be 
positive.

We can use these concepts to devise a system of comparisons tn machine 
language. All we need are the flags and the subtract operation. Suppose 
we wish to compare a range of numbers with 5, say:

LD A,5 ;Nunber we have
SUB N ¡Number being compared
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Then we will
If N = 5
If N < 5
If N > 5

have the following results -
Zero Flag set, Carry flag not set 
Zero Flag not set, Carry not set 
Zero Flag not set, Carry flag set.

It is therefore clear that the test for equality will be the zero flag, 
and the test for “>" will be the carry flag. (The test for is the 
absence of both flags).

The only inconvenience of this method is that the contents of 'A' have 
been altered by the operation.

Fortunately we have the "CP s" operation. This is read in English as 
"Compare". Note that it can only compare what we already have in the 'A' 
register; the range of possible numbers to be compared are the same as for 
addition.

"Compare" is exactly the same as "Subtract" except that the contents of 
'A' are unchanged. The only effect is therefore on the flags.
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INSTRUCTION FOR TWO-HANDED 
LOADING OPERATIONS

MNEMONIC BYTES TIME EFFECT ON FLAGS
TAKEN C Z PV S N H

LD Reg Pair, Number 3 10 ------
LD IX, Number 4 14 ------
LD IY, Number 4 14 ......................................

LD (Address), BC or DE 4 20 ------
LD (Address), HL 3 16 ------
LD (Address), IX 4 20 ------
LD (Address), IY 4 20 ------

LD BC or DE, (Address) 4 20 ------
LD HL, (Address) 3 16 ------
LD IX, (Address) 4 20 ......................................
LD IY, (Address) 4 20 ------

FLAGS NOTATION:

f Indicates flag 1s altered by operation
0 Indicates flag Is set to 0
1 Indicates flag 1s set to 1

Indicates flag 1s unaffected
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MANIPULATING NUMBERS
WITH TWO HANUS

In the preceding chapters we have seen just how agile the CPU can be in 
manipulating numbers on one hand.

His mathematical ability is such that he can also perform very complex 
calculations involving large numbers with only one hand.

But there are points there it it impossible to specify everything one 
wants with just 8-bit numbers. If we were limited to just the range of 0 
- 255 of the 8-bit ambers our computer would indeed be a very limited 
machine.

The most glaring example of needing 16-bit ambers is specifying the 
address of a memory location. We implied that such a manipulation would 
be possible when we discussed instructions such as LD A,(HL).

The slow w<iy of doing things would be to load each individual register in 
the register pair, as we did in the exercises of Chaper 7.

Fortunately for us there are some (but only a few) instructions on the Z8U 
chip which allow us to manipulate 16-bit ambers. In this chapter we 
shall be dealing solely with loading 16-bit numbers, while the next 
chapter will deal with 16-bit arithmetic.

SPECIFYING ADDRESSES WITH 16-BIT NUMBERS:

Please note that all addresses must be specified by a 16-bit amber.

You just can't specify an address with only 8-bits, even if it is only 
addresses from 0 to 255. The way the CPU works, it's net an address 
unless it is 2 bytes of 8 bits each.
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We implied this when we used the short shorthand of
LU A. (NN)

So also remember that 16-bits nunbers are stored in register pairs high 
number first (check again with Chapter 5. -“HL“ stands for “Hitfi";
"Low").

STORING 16-BIT NUMBERS IN MEMORY:

There is one facet of Z80 design which 1s very difficult to explain or 
justify:

When loading 16-bit numbers into memory, the reverse convention from that 
of register pairs is used.

The low bit is always stored first in memory.

Let us consider a situation where we place the contents of HL into memory:

listings) is that the low bit is always stored first.

BEFORE: LOCATION CONTENTS
17100 00

H L 17101 00
01 02 17102 00

Let us assume that HL contains 
locations are all empty.

the nunber 258 decimal » 0102H. The memory

AFTER: LOCATION CONTENTS
17100 02

H L 17101 01
01 02 17102 00

The convention with 16-bit nunbers stored in nemory (and in program
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There is no justification for that decision except to say that this was 
what the designers of the Z80 came up with and we now have to live with 
it.

Please be sure to read this carefully and make sure that you are familiar 
with this reversal of convention. It is likely to be the single most 
important source of errors in programs:

In registers: high bit stored first
In memory and programs: low bit stored first.

It is not something that can be glossed over and ignored as every time you 
deal with a 16-bit instruction in machine code you will need to think 
carefully about the order of the low and high bits.

Do not however feel put off by this - life on the Z8O would be virtually 
impossible without 16-bit instructions and it's a price we have to pay.

LOADING 16-BIT NUMBERS:

The 16-bit load group at its simplest comprises of loading a 16-bit number 
in the register pair. The general mnemonic abbreviation is

LD rr, nn

Once again we are using the notation of 2 letters to indicate a 16-bit 
number, “rr" means any register pair, “nn" any 16-bit number.

For those of you without the benefit of an assembler - that is if you have 
to convert the mnemonics into code by hand using the tables at the back of 
the book - then the discussion we had of the order of the 16-bit numbers 
in memory becomes crucial.
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Even if you do have an assenbler, you should be aware of these reversals 
of order to enable you to "read" the code when peeking into memory.

Let us look at a specific example: 
Load HL with 258 

the mnemonic for this is
LU HL.0102H

The instruction for 'LD H_,nn' is, as you will find at the end of the 
book,

21 XX XX

This means that the number 0102H needs to be inserted in place of the 'XX 
XX". But because of the reversal rule, we do not enter this as 0102H.

The proper instruction is therefore: 
21 02 01

In our examples we will show you this as

21 02 01 LD K, 0102H ( = 258)

You may not have problems entering our programs, but you need to be 
familiar with this when you write your own programs.

OTHER 16-BIT LOAD INSTRUCTIONS:

As well as being able to load 16-bit nunbers directly into the register 
pairs we can also load 16-bit numbers directly into the index registers 
(which are both 16-toe feet, as you will remember).

LD IX, nn
LD 1Y, nn

We can also manipulate information between a register pair and two 
successive locations in memory. (This 1s the 16-bit equivalent of loading 
the information from a single register into a single memory location).
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The general instructions are
LU (nn), dd 
LU (nn , IX 
LU (nn), IY

Remember that brackets are the shorthand for “Contents Of", so that the 
last instruction would be read as “Load the contents of memory location nn 
with register IY".

Because we are dealing with 16-bit numbers, we are actually loading the 
memory location specified and the following memory location into the 
register pair. It is not necessary to specify both addresses (because the 
CPU can figure out the address of the second location) but be careful not 
to confuse 8-bit operations with 16-bit operations.

The reciprocal nature of many of the instructions is also apparent here, 
and we can also load a register pair of index register with whatever is in 
a specific pair of memory locations:

LU dd, (nn) 
LU IX, (nn) 
LU IY, (nn)

EXERCISE:

ZX80 version: run the following short program entering it throu^i the 
editing program -

2A OC 40 LU HL, (16396)
C9 RET

We know from the ZX80 manual that 16396 and 16397 contain the address for 
the start of the screen display. If you now 'RUN' this program by 
entering

Start for USR? 17300
(assuming you have loaded it at 17300), you will receive as an answer the 
address of the display start.

Now try running the following program:
2A OE 40 LU HL, (16398)
C9 RET
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This will give you~ the address at the end of the screen. Is this what you 
expected? Can you work out wljy the screen is only 25 characters long?

NOTE VERY CAREFULLY THAT THE NUMBERS ARC ENTERED LOW BYTE FIRST ANU YOU 
WOULD GET A TOTA11Y ERRONEOUS ANSWER IF YUU WERE TO ENTER THEM THE OTHER 
WAY ROUND.

ZX81 VERSION:

In the ZX81 case the screen start is also defined by the contents of 
memory locations. 16396 and 16397 but this time want the result to be 
returned in register pair 'BC':

ED 4B OC 40 LD BC. (16396)
C9 RET

In the ZX81, we know that once the program is finalised the position of 
the screen start Is fixed and we only need to determine this once In each 
program.

On the other hand, If the system does not have a minimum of 3-1/4K of 
memory, the locations where the variables are stored will move around and 
the start of the variable file can be found by

ED 48 10 40 LO BC, (16400)
C9 RET

Note that “LD BC, (nn)" is a four-byte Instruction!
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MANIPULATING THE STACK

You may recall the image we developed in the beginning of the book of the 
stack where the CPU was able to keep information without having to 
remember the address of that particular information.

One of the advantages, possibly inadvertent, of the stack operations is 
that we can only PUSH and POP information in 16-bit lots. This is because 
the stack is primarily designed to remember addresses and we need to 
specify addresses as 16-bit numbers.

The general instructions for pushing information to the stack are 
PUSH rr 
PUSH IX
PUSH IY

And the general instruction for popping information back from the stack 
are

POP rr
PCP IX
POp IY

This is an exceptionally simple instruction, and you will note the lack of 
need to specify an address.

For the ordinary register pairs - i.e. not the index registers - these 
instructions are only a single byte long and therefore very economical in 
terms of programming space.

PUSH instructions are also not destructive: that is, the 16-bit register 
still contains the same information after the PUSHES.

Note that because we can PUSH any register pair and POP any register pair, 
the register you POP may net be the same as the one you PUSHED!
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For example
PUSH BC
POP HL

The effect of these two Instructions Is to leave the contents of the BC 
register unchanged but set the HL register to whatever the contents of the 
BC register were at the time of the push Instruction.

This effectively adds an Instruction of the type 
LD rr, rr*

from the 16-blt load group which was conspicuously missing. As each of 
the PUSH and POP Instructions for the register pair Is only one byte long, 
the cost 1n terms of memory Is not expensive.

The other extra 1s that we are able to PUSH or POP the register pair AFI 
This Is one of,the few Instructions where AF 1s treated as a register 
pair, but 1t is obviously sensible because there are many times when we 
would like to preserve the contents of the flags.

MOVING THE STACK AROUND:

As you know, the real strength of the PUSH and POP Instructions 1s that we 
do not have to think about the addresses.

But you will agree that 1t does not necessarily make sense that the same 
area of memory should serve as a stack If you have 16K of memory as If you 
only have IK.

The way the CPU actually keeps track of the address of the stack 1s by 
means of a "stack pointer", whdh can be thought of as a 16-blt register. 
We did not Include 1t 1n our discussion of registers because It Is not a 
register that can be manipulated 1n the same manner as the other 
registers.

The main thing one would want to do with the stack pointer Is to define 
Its position In memory, and that Is exactly the type of Instruction that 
Is available.
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INSTRUCTION FOR 
STACK OPERATIONS

MNEMONIC BYTES TIME 
TAKEN C

EFFECT ON FLAGS
Z PV s N H

PUSH Reg Pair 1 11 - - -
PUSH IX or 1Y 2 15 - - - - - -

POP Reg Pair 1 10
POP IX or 1Y 2 14 - - - - - -

LO SP, Address 3 10 -
LD SP,(Address) 3 20 - - -
LD SP, HL 1 6 - - - - - -
LD SP, IX or 1Y

FLAGS NOTATION:

f Indicates flag 1s 
0 Indicates flag Is 
1 Indicates flag Is 
- Indicates flag Is

2

altered by 
set to 0 
set to 1 
unaffected

10

operation
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LD SP, nn 
LD SP, (nn) 
LD SP, IX 
LD SP, IY

You can examine the stack of the Sinclair ZX80 and ZX81 by using the 
editing program, and looking In the last 30-40 bytes from the top of your 
memory.
'** Do not change the contents of the locations In the stack**"

Almost any change will cause your Sinclair to crash - the screen will go 
black and you wil have to turn the power on again. This is because the 
operating system places a lot of information it requires on the stack and 
changes will cause it to bomb.

For the same reason do not try to manipulate the position of the stack 
pointer unless you are sure of what you are doing.

NOTE:

In a well organised program the number of POPs and PUSHes should end up 
the same no matter which path the program follows. Any miscalculation may 
lead to funny results.

Note also that whenever a subroutine is called, the return address is 
pushed on to the stack. We can therefore use this to examine the address 
at which the USR subroutine is called by means of the following program:

ZX80 Version:
POP HL ; get address in HL
PUSH HL ; put it back on stack
RET

ZX81 Version:
POP BC ; get address in BC
PUSH BC ; put it back on stack
RET
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TWO FISTED ARITHMETIC

One of the benefits of being able to have 16-bit capabilities on what is 
effectively an 8-bit processor is that we can use the Ib-bits to specify 
addresses, or to perform calculations involving integer numbers up to 
about 64,000 (or in the range - 32,000 to +32,000 if negative nunbers are 
to be permitted).

In this light it is easy to see why the original Sinclair ZX8U limited all 
numbers to integers and to the range - 32,000 to +32,000.

But even though we can perform some arithmetic with two hands, our title 
for this chapter gives a hint of what 1s to come - two handed arithmetic 
is a little clumsy compared to one-nanded arithmetic. The range of 
options is just not there I

FAVOURED REGISTER PAIR:

In the same way that the 'A' register is the favoured register in «-bit 
arithmetic, so there is a favoured register pair in !6-b1t arithmetic, and 
it is the 'HL" register pair.

This favoritism is not quite so pronounced as in the 8-bit case, so we do 
not omit the name of the register pair.

ADDITION:

The additions are quite straightforward:
ADD HL ,BC
ADD HL,DE
ADD »..HL
ADD HL.SP

But that is it I
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Note that it is not possible to add an absolute nunber to HL - e.g. 'Add 
HL.nn' is not permitted. To perform that kind of calculation we need to:

LD DE.nn
ADO HL.DE

When you consider that this now ties up four of the 8-bit registers out of 
a total of 7. you realise it's not something you want to do too often.

Note also that there is no addition between 'HL' and the index registers. 
You will also remember that there is no load instruction which permits you 
to transfer the contents of IX or IY to BC or DE, so the only way to do 
such an additon would be like:

PUSH IX
POP DE
ADD HL,DE
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INSTRUCTIONS FOR 
TWO HANDED ARITHMETIC

FLAGS NOTATION:

MNEMONIC BYTES TIME 
TAKEN C

EFFECT ON FLAGS
Z PV s N H

ADD HL, Reg Pair 1 11 f - - 0 ?
ADD HL.SP 2 11 t - - - 0 ?
ADC HL, SP 2 15 f f f f 0 ?
ADD IX, BC or DE 2 15 1 — — — 0 ?
ADD IX, IX 2 15 f - - - 0 ?
ADD IX, SP 2 15 f - - - 0 ?
ADD IY, BC or DE 2 15 f - - - 0 ?
ADD IY, 1Y 2 15 f - - - 0 ?
ADD IY, SP 2 15 f - - - 0 ?

SBC HL, Reg Pair 2 15 f f f 1 ?
SBC HL, SP 2 15 H » t 1 ?

f Indicates flag is altered by operation
0 Indicates flag is set to 0
1 Indicates flag is set to 1
- Indicates flag is unaffected
? Indicates effect is not known
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The one point of note is the 'SP' register - the stack pointer.This is one 
of the very few operations where 'SP' is treated like a register proper, 
but obviously you can't use it as a variable I Think of what would happen 
to all the pops and pushes if you varied the contents of 'SP' at will.

EFFECT ON FLAGS:

Ib-bit arithmetic is where the carry flag really comes insto a field of 
its own, because as you can see from the table at the beginning of this 
chapter, the only other flag that is affected by the 'ADD' instruction is 
the 'subtraction' flag (and all we are saying is that the 'ADD' 
instruction is not a subtraction!)

The carry flag will be set if there is an overflow from the high bit of 
"H'( - any overflow fran 'L' is automatically placed into 'H' by the 
calculation ).

ADD WITH CARRY:

Because of the limited nature of 16-bits, we are able to chain additions
just as in the 8-bit case. Tne instruction “Add with Carry“ - mnemonic
'ADC' operates in a similar manner to 'add' and with the same range of
register pairs:

ADC HL ,BC
ADC HL,DE
ADC HL,HL 
ADC HL.SP

16-BIT SUBTRACTION:

16-bit subrtraction is also a very straightforward operation, but there is 
no subtraction without carry: if you are not sure of the status of the 
carry flag, be sure that your program includes a line to clear the carry 
flag before any subtraction operation.

SBC HL ,BC 
SBC rt. ,DE
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SBC HL ,HL 
SBC HL.SP

(That last instruction has obvious application: set 'HL' to the end of the 
memory used by your program, screen display and variables, subtract 'SP', 
and the result <negative> will be the amount of free space. Can you write 
a simple program to do that? See the end of the chapter to confirm your 
solution).

EFFECT OF CARRY ARITHMETIC ON FLAGS:

You may have noticed that three ether flags are affected by the 'Add with 
Carry' and 'Subtract with Carry' that were net affected by the simple 16- 
bit addition instructions.

These are the zero flag, the siyi flag and overflow flag, tach of these 
is set according to the result of the operation.

INDEX REGISTER ARITHMETIC:

Index registers are totally limited to addition without carry!

Furthermore the range of registers that can be added to the index 
registers is extremely limited:

Adding the 'BC' or 'DE' register pair
Adding the Index register to itself
Adding the stack pointer.
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SOLUTION TO MEMORY LEFT EXERCISE:

The end of the memory space the program uses is defined by the contents of 
the E-line memory location. These are different for the ZX8O and ZX81:

ZX80 E-line is in 16394,16395
ZX81 E-line is in 16404,16405

Obviously if we load HL with the contents of that location we are halfway 
there:

LU HL,(E-line) 
then subtract the 'stack pointer*:

SBC HL.SP

Because of the 'carry' we need to clear the carry flag. This is most 
easily achieved by the 'AND A' instruction, which is covered later in the 
book. Three-quarter marks if you knew you had to allow for the carry but 
didn't know how to do it. One-quarter marks if you forgot all about the 
carry.

Because the stack pointer is in higher memory than the top of your program 
(or else you are in diabolical trouble) the result will be negative.

Let us now proceed to get the number of bytes left as a positive number, 
using the 'BC' register ('DE' would be just as good for this). We first 
want to shift HL to BC, but there is no 'load' instruction to do this and 
we will need to use a push followed by a pop:

PUSH HL 
POP BC 

HL still has the same information as before, so HL=BC.

To get HL=-BC, subtract BC from HL twice (but don't forget that the carry 
has just been set by the subtraction so must be cleared again):

AND A
SBC HL ,BC
SBC HL ,BC

HL now contains the negative value of what it contained before - i.e. the 
positive nurtber of bytes left.
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ZX81 users will now need to get the nunber into the 'BC' register pair 
again to get a result from the 'USR' function. To get 'HL' back into 
'BC':

PUSH HL
POP BC

and finally a return frcm the USR function: 
RET

Did you get this right?
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INSTRUCTIONS FOR 
LOGICAL OPERATORS

MNEMONIC BYTES TIME 
TAKEN

AND register 1 4
AND number 2 7
AND (HL) 1 7
AND (IX + D) 3 19
AND (IY + D) 3 19

OR register 1 4
OR number 2 7
OR (HL) 1 7
OR (IX + D) 3 19
OR (IY + D) 3 19

XOR Register 1 4
XOR Number 2 7
XOR (HL) 1 7
XOR (IX + D) 3 19
XOR (IY + D) 3 19

FLAGS NOTATION:

EFFECT ON FLAGS
C Z PV s N H

0 4 4 4 0 0
0 4 4 4 0 0
0 t 4 I 0 0
0 t i 0 0
0 4 1 i 0 0

0 4 1 4 0 0
0 4 t 4 0 0
0 t » 4 0 0
0 4 4 4 0 0
0 i t 4 0 0

0 i t 4 0 0
0 4 1 4 0 0
0 1 1 4 0 0
0 f t 4 0 0
0 t 4 4 0 0

4 Indicates flag Is altered by operation 
0 Indicates flag Is set to 0
1 Indicates flag Is set to 1

Indicates flag Is unaffected.
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LOGICAL OPERATORS

There are three operations which are as valuable in the field of machine 
(or assembly) language programming as the more commonly used '+', 
multiplication or division. These are generally referred to as boolean 
operators after the man vfio formulated the rules of these operations. 
These operations are:

AND 
OR 
XUR

We are already familiar with the concept of operations which apply to an 
entire number, but the reason that these operations are so valuable is 
they operate on the individual bits of the number.

Let us look at one of these operations, 'And':

BIT A BIT B RESULT BIT A 'ANO' BIT B

0 0 0
1 0 0
0 1 0
1 1 1

It is obvious that the result of an 'AND'ope rat ton is to gi us a '1' 
only if A AND B both contained a '1'.

You may be asking yourself - "What is the point of such an operation?"

The 'And' operation is extremely useful tn that it allows us to nesk a 
byte so that it is altered to contain only certain bits:

If for example, we wish to limit a particular variable to the range of 0 - 
7 only, we quite clearly wish to Indicate that we want only the bits 0 - i 
to contain information. (If bit 3 contained Information, the number would 
be at least 8).

E.g. 00000101 «5
<-------------------- >
These bits 
must be 'O'.
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If we therefore take a nuntier rfiose 
'and' operation with '7', the result 
range 0-7.

E.g. 0110 10
0 0 0 0 0 1

value we do not know and apply the 
will be a number which lies in tne

0 1 -105
11 -7 -> Mask

Result of and 0 0 U 0 0 0 01 -1 -> In
range 0-7

Note that the Z80 chip only allows for the 'AND' operation to take place 
with the 'A' register. 'A' can be 'AND'ed with a value, any of the other 
8-bit registers or with (HL).
E.g. ANU 7 Note that as only the 'A'

AND E register can be acted on,
AND (HL) it need not be mentioned 

in the instruction.
The same is true for the other Boolean operations, 'OR' and 'XUR'.

The 'OR' operation is very similar in concept to the 'AND' operation:

BIT A BIT B BIT A 'OR' BIT B

0 0 0
0 1 1
1 0 1
1 1 1

It is obvious that the result of an 'OR' operation is to give us a '1' if 
either A or B contained a '1'.

Again you may be asking what is the point of such an operation.
The 'OR' operation is also extremely useful in that it allows us to set 
any bits in a nuntoe r: if, for example, we wished to ensure that a nuntier 
was odd, then quite clearly we have to set bit 0. (The same result could 
be obtained by using the 'SET' instruction).

LD A, number
OR 1 pnake nuntoer odd

The above two lines would be a typical mnemonic listing.
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The concept of 'XOR' - pronounced 'Exclusive or' - is also easy to 
understand but its actual use in programming is more limited.
The result of 'XOR' is a '1' only if one of A or B contains a '1'.
In other words, the result is the sane as for the 'or' operation in all 
cases except when both A and B contain a '1'.

XOR => OR - AND

BIT A BIT B BIT A 'XOR' BIT B

0 0 0
1 0 1
0 1 1
1 1 0

The last thing we must consider is the effect that these operations have
on the flags.

ZERO FLAG This flag will be on (=1)
if the result is zero

SIGN FLAG This flag will be on (=1) 
if bit 7 of result is set

CARRY FLAG Flag will be off (=0) 
after 'AND', 'OR', 'XOR' 
i.e carry will be reset.

PARITY FLAG

(Note that this 
flag also doubles 
as Overflow Flag)

HALF-CARRY FLAG )
SUBTRACT FLAG 1

This flag will be on (=1) 
if there is even no. of bits 
in the result:
0 110 1 1 1 0 => off 
0110 1 0 1 0 => on.

Both flags turn off (=0) 
after 'ANO', 'OR', 'XOR' 
These flags are used in 
'BCD' arithmetic.
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USE OF BOOLEAN OPERATIONS ON FLAGS:

There is a special case of the Boolean operators which is very handy - the 
case of the register A operating on itself.

AND A 
OR A 
XOR A

A is unchanged, carry flag cleared 
A is unchanged, carry flag cleared 
A is set to 0, carry flag cleared.

These instructions are often popular because they require only one byte to 
do what might otherwise require two. (Such as LU A,0).

The carry flag often needs to be cleared - e.g. as a matter of routine 
before using any of the arithmetic operations such as

ADC 
SBC

Add with carry 
Subtract with carry.
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LOOPS ANU JUMPS

Loops and Jumps is what gives a computer program real power. Once you 
have the ability to make decisions and to execute different bits of tne 
programs as a result of previous calculations you are really getting 
places.

This freedom can also cause problems, create programs which are difficult 
to follow, and almost impossible to debug.

I would strongly suggest that you designed your computer programs 
carefully before entering code, and that is why we have included the 
chapter "Planning your Machine Language Program”. I emphasise this now 
because loops and jumps are viiat will entice you away from good program 
desi gn.

MACHINE LANGUAGE EQUIVALENT OF 'GOTO':

In BASIC, you are familiar with the instruction 'GOTO', which transfers 
control of your program to the instructions in the line you 'GOTO'.

Nothing could be simpler to implement in machine language: just specify 
the memory location you would like to CPU to find the next instructions 
and you are half-w^y there.

The most simple instruction is "Jump To":
JP XX XX
JP (HL)
JP (IX)
JP (IT)

one of these instructions can also be made to be dependent on the status 
of one of the flags, such as the carry flag. This conditional Jump 
instrtuction is:

JP CC, NN
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where CC is the condition to be met. If we had
JP Z.0000

for example, this would be read "Jump” if zero flag is set to address 
'0000'. (This is the address the Sinclair jumps to when you turn the 
power on, and as such a 'JP' to zero might be used in a machine language 
program if you wanted to clear all the memory and start again with 'K').

Now note that the CPU does not allow for any mistakes. If you say 'Jump', 
it will jump. Because almost any code can be construed as an instruction, 
the CPU does not care if you land it in the middle of data, or in the 
second byte of a two-byte instruction: it will read the byte at the 
address it finds and presumes that is the start of the next instruction.

The way the CPU works out the 'Jump' instructions is really quite simple: 
it has a little counter called the “Program Counter" Uiich tells it where 
to find the next instruction to be executed. In the normal course of 
programming (that is, without jumps) the CPU looks at the instruction to 
be executed and adds however raaqy bytes there are to the instruction to 
the program counter.

Thus if it meets a 2-byte instruction, it adds 2, while a 4-byte 
instruction will make it add 4 to the program counter.

When it comes across a “Jump" instruction, it merely replaces the contents 
of the program counter with tiiatever value you have specified. That is 
why you cannot allow aqy errors to creep in.

LONG JUMPS AND SHORT JUMPS:

We can describe the above instructions to be the machine language 
equivalent of a 'Long Jump' because the 16-bit address allows us to jump 
to anywhere the ZbO chip can possibly go.

The disadvantage of the long jump is that:
A. Often we don't want to jump that far

but still have to use a 3-byte instruction.
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B. We cannot easily relocate the program 
to another part of memory because we 
are specifying the absolute address.

It was mainly to overcome these two disadvantages that the 'Short Jump' 
was introduced. This is referred to as a “Relative Jump" and allows us to 
jump up to +127 bytes from our present position or up to -128 bytes from 
the present position, i.e. the distance jumped can be specified in one 
byte I

RELATIVE JUMP INSTRUCTION:

The instruction mode is simple: 
JR d

where d is the relative displacement. We can also make the relative jump 
dependent on some condition, such as whether the carry is set, or the zero 
flag 1s set, for example, these conditional jumps are written as

JR cc, d
where cc is the condition to be met.
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The value of the displacement is added to the "Program Counter".

This means it takes the present value of the program counter and adds the 
relative value you have specified. The value you specify can be either 
positive - jumping forward - or negative - jumping baclwardsl If you 
check back to our chapter on negative jumps you will realise this means 
that relative jumps are limited to the range -128 to +127.

Note that, when the CPU is executing a relative jump instruction, the 
program counter is already pointing to the next instruction which would be 
executed if the condition was not met.

This is because when the CPU comes across "JR" it knows that it has a 2- 
byte instruction to deal with and adds 2 to the program counter - the 
program counter is therefore pointing to the instruction after the 
relative jump!

E.g. In a program such as

LOCATION COPE

17100 Add A.B
17101 JR Z.02H
17103 LO B,0
17105 Next LO HL .400ÜH

The following is the w^y the CPU deals with the program:

Load byte at 171000
Byte is part of 1-byte instruction 
so set program counter to 17101 
Execute instruction

Load byte at 17101
Byte is part of 2-byte instruction 
so set program counter to 17103 
Get next byte to complete instruction 
Execute instruction

Load byte at 17103
Byte is part of 2-byte instruction 
so set program counter to 17105 
Get next byte to complete instruction 
Execute instruction
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Now this is the part where the relative jump instruction has to decide 
what to do about the program counter:

If the zero flag is set, add 2 to the
program counter ■> 17105
If the zero flag is not set, do nothing 
(program counter = 17103)

This also explains why there are two times shown for the time taken for 
this instruction. It takes less time to do nothing than to calculate the 
new program counter.

The CPU will therefore execute either the instruction at 17103 or the 
instruction at 17105 depending on the zero flag.

It is also possible to make the relative jump negative as we have already 
mentioned.

EXERCISE:

Because the relative jump is a 2-byte instruction, and the program counter 
is pointing to the next instruction after the relative jump, what would be 
the effect of an Instruction which read:

JR -2

MACHINE LANGUAGE "FOR ...NEXT" LOOPS:

You are, I am sure, familiar with the 'BASIC' form of the "FOR ...NEXT" 
loop:

FOR 1=1 to 6 
LET C = C+l 
NEXT I

The machine language equivalent is similar but takes a different form. 
Let us consider how we could implement the machine language loop using the 
arithmetic functions and the relative jump:
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Loop

LD B,1
LD A,7 
INC C 
INC B 
CP B
JR NZ.Loop

; Set Counter to 1
; Max. of Counter + 1
; C - C + 1
; Increment Counter
; is B-A7
; if not loop again

This will work, but note the following: We are tying up 2 registers, one 
to increase, and one to hold the maximum; and the instruction which 
increments the counter does not set any flags on completion.

A much better way would be if we counted down I

We know that we have to do the loop 6 times, so why not set 'B1 to 6 and 
count down?
This will give us:

LD B,6 ; Set Counter
Loop INC C ; C • C + 1

DEC 8 ; Decrease Counter
JR NZ.Loop ; Loop if not finished

You can see that this is a much more efficient way of doing things.

The ZX80 chip has a special instruction which combines the 
last two lines above.

This instruction is written as: 
DJNZ d

And is read as “Decrease (B) and Jump if Not Zero". (The d is the relative 
displacement). This instruction is a 2-Byte instruction and therefore 
saves one byte on the above coding.

Because of the existence of this special instruction, the 'B* register is 
usually used as a counting register.

The limitation of 'DJNZ* instruction is that one can only count up to 256.
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DJNZ instructions can however be nested, if required:

LD B.1OH
Bigloop PUSH BC 

LD B.O
Litloop

; B=16
; Save Value of 'B
; Set B=256

; Whatever calculation

DJNZ Litloop 
POP BC 
DJNZ Bigloop

; Done 256 Times?
; Get back value of B 
; Do Bigloop 16 times

Naturally the DJNZ instruction does not have to be used: You could just 
as easily code this by setting 'BC' to 1000H, and used a short routine 
which decreased BC and tested it for zero.

Watting Loops:

There are times in machine language programs when things happen so fast it 
1s necessary to just wait a little while. Examples that spring to mind 
are sending Information to a cassette (the pips have to be spaced 
sufficiently far apart to be able to read them later) or sending 
information to a typewriter (imagine printing thousands of characters a 
second 1).

It is therefore useful to set up waiting loops using the DJNZ 
instructions:

LD B, Count
Wait DJNZ Walt

The instruction 'DJNZ Wait' will cause the CPU to jump back to the DJNZ 
Instruction as many times as required to set 'B' back to zero before 
proceeding again.

This should give you the answer to our exercise of what happens when you 
write:

Wait JR Wait

You might be waiting quite a while for the CPU to exit this loop!
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INSTRUCTIONS FOR CALL 
AND RETURN GROUP

MNEMONIC BYTES TIME 
TAKEN C

EFFECT ON FLAGS
Z PV S N H

CALL Address 3 17 - . - -

CALL cc.Address 3 10/17 - - -

RET 1 10 - - - - -

RET cc 1 5/11 - - - -

Note: cc is 
following are

FLAG

CARRY

Zero

Parity

Sign

condition to be met 
the conditions which

ABBREVIATION

C 
NC

Z 
NZ

PE 
PO

M 
P

for instruction 
can be used:

i to be executed.

MEANING

Carry Set (=1)
Carry Clear (*0)

Zero Set (=1)
Zero Clear (=0)

Parity even (=1)
Parity odd (=0)

Sign Neg. (=1)
Sign Pos. (=0)

The

FLAGS EFFECTED: 
Note that none 
instructions.

of the flags are effected by the call or return

TIMING:
Where two times are shown, the shorter time indicated is for the case of 
the condition not being met.
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USE OF SUBROUTINES IN YOUR
WHINE LANGUAGE PROGRAMS

The use of subroutines is as easy 1n machine language programming as 1t is 
in ordinary basic programs, 1f not easier.

In fact, remember that using the 'USR' function in your basic program is 
really calling a subroutine: we need to have a 'return' instruction to 
finish!

Therefore 1t is very easy for you to test certain subroutines 
independently of your main machine language program.

THE MAJOR DIFFERENCE THAT YOU HILL FACE IN IMPLEMENTING SUBROUTINES IN 
YOUR MACHINE LANGUAGE PROGRAM IS THAT IS IS NEcESsARRY FOP YOU TO kNOw THE 
Address where the subroutine starts:—————————————
This can cause a problem if you store the machine language routines in a 
variable array, because the address of this variable is not necessarily 
fixed. See the last chapter on hints for storing programs which suggests 
that programs be stored in an array (so that they can be saved and 
reloaded) but moved to other addresses for execution.

Note that subroutines can also be called conditionally.

This is the machine language equivalent of the basic statement:

IF (condition) then GOSUB (address)
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The difference Is that the only conditions allowed are the status of four 
of the flags:

Carry flag
Zero flag
Parity flag (also overflow flag)
Sign flag

Remember that all these flags are set according to the last instruction 
which affected that particular flag.

It is therefore good practice to have 'CALL' or 'RETURN' instruction 
inmediately after the instruction which sets the flag.

E.g. LO A,(number)
CP 1
CALL Z,one
CP 2
CALL Z,two
CP 3
CALL Z,three

The above routine allows you to Jump to various routines depending on the 
value stored in the location 'number'.

A shorter routine is possible if you know that there are only the above 
three possibilities for the value stored in 'number':

LO A,(number)
CP 2
CALL Z.two ; A - 2
CALL C,one ; A < 2 => A ■ 1
CALL three ; A > 2 =■> A =■ 3

This is because the instruction 'CP 2* sets both the zero and carry flags 
and the call instructions do not affect any flags.

Similarly the use of the conditional return from a subroutine is very 
useful.
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BLOCK OPERATIONS

You should by now be very familiar with the language your computer 
understands - it's very much like learning a foreign language: when you 
can think in that language you know you have mastered it.

This chapter covers the last set of very useful instructions - the next 
four chapters deal with instructions that are nice to have around and 1n 
some circumstances come into their own, but in general terms you should be 
able to write machine language programs with what you already know.

Be sure however to read the chapter on planning your machine language 
program!

The instructions covered in this chapter are by their very nature able to 
leap tall buildings in a single bound, faster than a speeding bullet - in 
other words, instructions which can operate on a block of memory rather 
than just single 8-bit bytes.

let's start with the simplest of these: 
CPI

With your knowledge of the Z80 Language, you should be able to immediately 
recognise this is a member of the “compare" family, and it is in fact an 
extended compare.

It is read 1n english as “compare and increase“- (you will remember that 
one can only compare with anything with the contents of Register 'A', and 
this does not need to mentioned in the Instruction.)

"CPI" compares 'A' with (HL) and increases HL automatically. This means 
that after the CPI operation, HL is already pointing to the next location 
ready for a repeat.

With such an Instruction we might be able to
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INSTRUCTIONS FOR BLOCK 
COMPARE AND MOVE GROUP

MNEMONIC BYTES TIME 
TAKEN C

EFFECT ON FLAGS
Z PV s N H

LOI 2 16 f 0 0
LDD 2 16 - - 1 - 0 0

LOIR 2 21/16 - - 0 0 0
LOOR 2 21/16 - - 0 - 0 0

CPI 2 16 1 f f 1 1
CPD 2 16 - t f 1 1

CPIR 2 21/16 f f i 1 f
CPDR 2 21/16 - » 1 f 1

FLAGS NOTATION:

# Indicates flag is altered by operation
0 Indicates flag is set to 0
1 Indicates flag is set to 1

Indicates flag is unaffected

TIMING:

For repeat instructions, the times 
shown are for each cycle. The shorter 
time indicated is for the case of the 
instruction terminating - eg. for CPIR, 
either BC = 0 or A = (HL).
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Write a routine to search all of memory for a particular match, as 
follows:

Search CPI
JR NZ, Search

In this way, unless a match is found (zero flag will be set as in all 
compare instructions) the program will keep on looking.

Unfortunately this is not such a good idea as unless a match is found the 
program would never end!

Fortunately the designers of the Z80 language thought of this and the CPI 
instruction also automatically decreases BC!

We can therefore select at will the length of the block we wish to search 
through and thus specify an end to the search.

Let's assume that the length of the block we are searching through is less 
than 256 bytes long, so that the BC count would only be stored in the C 
register, we could write:

Search CPI
JR Z, FOUND

INC C 
DEC C 
JR NZ, SEARCH 

NOTFOUND 
FOUND

Obviously a different routine would be implemented if the length of the 
block was more than 255 bytes. Note the use of the INC and DEC 
instructions to test whether C = 0. These two instructions only require 
one byte each, and as they both affect the zero flag the net effect is to 
set the flag only if C was originally zero. The other benefit is that 
coding does not alter any of the other registers.

Now we could also wish to search a block of memory starting from the top 
rather than from the bottom, and we therefore have the instruction:
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CPD
Which is read in english as “compare and decrease". The decrease refers 
to HL of course, and the effect on BC is still the samel

Even more powerful than these two instructions are the real supermen: 
CPIR 
CPDR

These are read as “Compare, Increase and Repeat" 
and "Compare, Decrease and Repeat".

These 2-byte instructions are unbelievably powerful: they allow the CPU to 
automatially continue searching through the block of memory until either a 
match is found or the end of block 1s reached. (Naturally we have to 
specify A, HL and BC before starting, but even so this is unbelievably 
economical coding).

Because the instruction will stop for one of two possibilities (ie. match 
found in middle of block or no match found at all) we have to ensure we 
use some code at the end to differentiate between the two possibilities.

*** ★ ★★ ***

Users who are going to be writing machine code for the ZX81 and who wish 
to also make facility of the "SLOW" mode to enable continuous display 
should be very careful in using CPIR and other similar instructions as 
they can be very time consuming instructions.

CPIR, for example, requires 21 cycles for each byte to be searched. 
Admittedly there are 4,000,000 cycles in each second, but even so this 
means that searching through 4,000 bytes requires l/50th of a second.

This may not seem like a very long time to you but when you remember that 
the interrupt will also come every l/50th of a second or so to display the 
screen the net effect is to cause a flicker in the screen. (This is 
because the interrupt cannot stop an instruction in the middle).
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Experience has shown that instructions which take as little as 100 cycles 
(ie. searching through a block of 5 bytes!) can cause flickering, but of 
course only if the interrupt comes during execution of that instruction. 
You may have to weigh up the disadvantages of flicker against the 
possibility of that instruction being processed when the interrupt comes.

Typically the ZX81 in SLOW mode will process the program for about 1400 
cycles before being interrupted. Thus an instruction with a time of a 
100 cycles has a 7% chance of being executed when the interrupt comes.

*** *** ***

The remaining block operations are along the lines of "move it, mate".

These are:
LD1 LDIR
LDD LOOR

Obviously part of the "Load" family these are read as: 
LOAD AND INCREASE 
LOAD, INCREASE ANO REPEAT 
LOAD AND DECREASE 
LOAD, DECREASE, AND REPEAT

Taking the simplest one first, 'LDI' 1s really a combination of the 
following set of actions:

LOAD (DE) WITH (HL)
INCREMENT DE, HL 
DECREMENT BC

Note that this is the only instruction that will load from one memory 
location to another without having to be loaded into a register first.

The use of the 'DE' register as the destination address 1s very clever - 
this way you never forget which register holds the DE-STINATION!
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The symmetrical instruction 'LDD' is exactly the same except that HL and 
DE are decreased as loading proceeds. The difference between 'LOT and 
'LDD' is more important when the two blocks ( the one where the 
information is and the one where the information is going) overlap.

Suppose we are using this instruction in a word processing application, 
and we want to delete a word from a sentence:

The big brown dog jumped over the fox.

If we now want to delete the word 'brown' all we need to do is to move the 
rest of the sentence to the left by 6 characters.

DE » DESTINATION = CHARACTER 9
HL = SOURCE = CHARACTER 15
BC • COUNT = 24 CHARACTERS.

Let us start with LDI: after one instruction we have

The big drown dog jumped over the fox.
And HL* 10, DE* 16, BC* 23.

After 2 more instructions:
The big dogwm dog jumped over the fox.

And after all the instructions have been completed: 
The big dog jumped over the fox.e fox.

(If we had wanted the portion after the full stop to be blanked out this 
could have been achieved by adding blanks at the end of the original 
sentence and increasing BC to say 30.)

If we now want to reverse the process and return the word 'brown' to the
sentence, we can't simply use 'LDI' again because we will overwrite the
information we want to shift:
EG. HL = SOURCE * CHARACTER 9

DE = DESTINATION - CHARACTER 15
BC » COUNT » 24 CHARACTERS.

After one instruction we would have:
The big dog judped over the fox.e fox.

After 6 instructions we would have:
The big dog judog juver the fox.e.fox.
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So far so good. But another three gives:
The big dog judog jud og the fox.e.fox.

The problem is that we have overwritten the information we want to 
transfer.

We therefore have to use the 'LDI' Instruction, with the DE register 
pointing to the end of the sentence.

The Instructions 'LOIR' and 'LDDR' are even more powerful, able to shift 
thousands of bytes around very quickly.

EXERCISE:

Write a short routine to transer 32 bytes from the ROM part of memory to 
the screen.
Be sure to define a line full of blanks in the basic program before 
calling the USR function.
ZX80 users could try moving 32 bytes from location OBCOH.
ZX81 users could try moving 32 bytes from location 0190H.
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Z80 INSTRUCTIONS THAT

ARE LESS FREQUENTLY USED
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REGISTER EXCHANGES

He briefly discussed in the first few chapters the idea of the CPU having 
gloves it could put on or take off, and thus store some information in a 
place that is more accessible than memory locations.

You must remember that you cannot manipulate these alternate registers and 
the analogy with gloves is a very valuable one. While they will retain 
their shape, there is no way they can do any arithmetic or counting by 
themselves.

The first instruction 1s: 
EX AF.AF'
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This does exactly what its name suggests: "Exchange the register pair AF 
and AF'". In the gloves analogy we would say "Swap gloves on the pair of 
hands AF".

ZX81 users should be extememly cautious about using this instruction. The 
manual states that the AF alternate register pair is used by the display 
routine and using the "EX AF, AF'“ instruction may cause the program to 
crash. (This is because if the screen refresh comes when you have the 
wrong set of gloves on, the program will look for the information to be 
displayed in the wrong place).

The next general swap gloves instruction is:
EXX

This instruction swaps the gloves on all other 8-bit registers as follows: 
B C B' C'
D E <=> D' E' 
HL H' L'

This is therefore a very powerful Instruction but its very power makes it 
limited in use. This is because it acts on all the registers at once and 
it is not possible to hold any value back. (Except in register 'A' which 
is not affected by “EXX").

The only way around this problem is to write a short routine along the 
lines of:

PUSH HL
EXX
POP HL

This means that you have saved the values of BC,DE and HL in the alternate 
set of registers but still have HL's value to work with.

The last instruction in this group does not really fall within the swap 
gloves type:

EX DE,HL

In this instruction DE gets the contents of HL and HL the contents of DE.
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This instruction is indeed very useful, because as we saw HL is a favoured 
register pair in many applications and there are times when the value we 
want to manipulate is in DE.
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BIT, SET AND RESET

So far all the Instructions we have been dealing with have involved the 
manipulation of 8-bit or 16-bit numbers.

The "Bit, Set and Reset" group allows us to manipulate the single bits of 
registers of contents of memory locations. Because of the very tedious 
nature of fiddling with single bits this is not a very commonly used group 
of instructions.

Furthermore, it tends to take even longer to set a single bit in a 
register or memory location than it does to change or examine the entire 8 
bits of that memory location or register.

Nonetheless there are times when you need to know whether a bit in the 
middle is set or not, or even to set a bit. Note however that many of the 
bit setting or resetting can be carried out using the logical operators.

The "Bit, Set and Reset" group of instructions allows us to turn any bit 
“on" or "off" at will, or even just look at a specified bit to see what 
its status is.

Let us look at the first set of instructions:

SET n, r
SET n, (Hl)
SET n, (IX+d)
SET n, (lY+d)

The "SET" instruction turns “On" (i.e. * 1) the bit numbered 'n' (using 
the notation 0 - 7) in register 'r or in the specified memory location.

No changes are made to any of the flags.

The "RESET" group of instructions operate on exactly the same range of 
registers or memory locations, but instead of turning the bits "On", it 
turns the bits "Off" (i.e. • 0).
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The "BIT" instructions should really be read as "BIT?" in English as the 
function of this instruction is to test the contents of the indicated bit.

No changes are made to the registers or memory locations but the zero flag 
is altered according to the status of the bit tested.

If Bit = 0 then zero flag is set on ( =1 )
If Bit = 1 then zero flag is set off( =0 )

This may seem confusing at first glance but think of it this way: if the 
bit 1s zero, then the zero flag is raised; if the bit is on, then 
naturally the zero flag would not be raised.
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ROTATE AND SHIFTS

You can move them to the left, you can move them to the right, you can 
shift those registers any which way you like.

The trick is to differentiate between the various shifts and rotate in 
order to know which one to use when and to remember that the 'Carry' bit 
can often be considered to be a 9th bit of the registers. (I.e. the Carry 
is bit # 8 if the bits are numbered 0 - 7).

Some rotate instructions go right through the Carry (as the 9th bit) so 
that the entire rotation goes through a cycle of 9 bits. For example, let 
us look at 'RLA' (the meaning of each instruction will be made clear later 
in this chapter):

| .... ..... ........ 1
< |cj « | 7 0 |—*-

Other rotations involve only an 8-bit cycle, although the carry flag is 
changed according to the bit which has to go the 'Long way round'. An 
example of this is the 'RLCA' instruction:

This means that in a left rotation as above the contents of bit 0 are 
transferred to bit 1, bit 1 to 2, etc., but the contents of bit 7 are 
transferred to both the carry bit and to bit 0. Compare this with the 
'RLA' instruction above where bit 7 gets transferred to the carry bit and 
the carry bit gets transferred to bit 0.
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LEFT ROTATIONS:

There are basically two types of left rotations:

* ROTATE LEFT REGISTERS - this is a 9-bit cycle rotation as illustrated 
above for 'RLA'

RLA - "Rotate left accumulator"
RL r - "Rotate left register r"

* ROTATE LEFT CIRCULAR - the 'Circular' means that the cycle is only 8- 
bits as with the RLCA instruction illustrated above.

RLCA - Rotate left circular 'A'
RLC r - Rotate left circular 'r'
RLC (HL) - Rotate left circular (HL)
RLC (IX+d) - Rotate left circular (IX+d)
RLC (1Y+0) - Rotate left circular (IY+d)
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As well as these two left rotate Instructions there is a SHIFT LEFT 
instruction available, but this can only operate on register 'A':

SLA - shift left accumulator

This is different in that the contents of the carry bit are lost and bit
zero is filled with 0. This is effectively multiplying 'A' by 2 as long as
nothing is transferred to the accumulator. (Think about 'SLA' if A = 80H).

RIGHT ROTATIONS:

Once again we have the two basic modes of rotations but this time to the 
right. Exactly the same range of possible memory locations and rotations 
can be spinned to the right as to the left.

RRA - Rotate right accumulator
RR r Rotate right registerkn— ...M
RRCA - Rotate right circular 'A' 
RRC r - Rotate right circular 'r'
RRC (HL) - Rotate right circular (HL)
RRC (IX+d) - Rotate right circular (IX+d)
RRC (IT+d) - Rotate right circular (lY+d)

A similar shift right is available as for shift left:

SRL r - Shift right logical register 'r'

0—[Z .__ ZZH~0
In this case this is pure division by 2 as long as we are using unsigned 
numbers (i.e the number range we wish to represent is 0 - 255).
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Because in some applications we use the convention to indicate negative 
numbers by setting bit 7 to 1 (i.e giving us a range of -128 to +127) 
there is an addition shift right instruction called

SRA r - Shift right arithmetic *r*

1—Lc]

As you can see this is also a division by 2 but it preserves the sign bit.
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IN AND OUT:

In and Out Is just about as simple a concept as you could get in machine 
language programming.

There are times when the CPU needs to get Information from the outside 
world (“No CPU is an island?“), such as from the keyboard or from the 
cassette player.

As far as the CPU is concerned that's totally foreign territory and as all 
good CPUs it will never leave home. The most it is prepared to do is to 
open a door to allow deliveries. The CPU doesn't know and doesn't care to 
know how a cassette player works.

All the relevent information is which door the cassette man is going to be 
delivering his goodies to - there is a choice of up to 256 doors for the 
Z80 chip but the actual number available to a particular CPU is a result 
of decisions made by the hardware manufacturers. As far as the Sinclair 
is concerned there is only the keyboard, the printer and the cassette 
player.

The other thing the CPU doesn't want to know about is how the data is 
being transmitted. As far as it's concerned, if it's coming in or going 
out, it's an 8-bit byte.

The keyboard is on the other side of door FE, so that to get data in from 
the keyboard you use the instruction

IN A,(FE)

Now you may be asking yourselves how the 40 keys of the keyboard are 
arranged so as to be represented by 8-bit bytes.

The answer is not what you would expect - the keyboard only returns 
information from 5 keys at a time. It is the value of 'A' as the door is 
opened which determines which set of 5 keys are going to be examined!
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The keyboard is divided into 4 rows, each comprising two blocks of 5 keys:

3 =>(12345) (67890) <= 4
2 => ( Q W E R T ) ( Y U I 0 P ) <= 5
1 => ( A S D F G ) ( H J K L N/L) <= 6
0 => ( SFT Z X C V ) ( B N M . SPC) <= 7

You can see that there are 8 blocks of letters and we should therefore be 
able to correlate this with the 8 bits of 'A'. This is in fact the case:

All of the bits of 'A' are set to 'ON' except for one bit which specifies 
the block to be read.

You can think of it as something like a secret handshake - as the CPU goes 
to the door to get the Information the handshake determines which piece of 
information it gets.

Thus to read the keys in the block “ 1 2 3 4 5 ", it is bit 3 of 'A' which 
should be off:

A = 1 1 1 1 0 1 1 1 = F7

The contents of the keyboard are returned in 'A' with the information 
coming into the lower bits of 'A':

i.e Key '1' -> bit 0 of 'A'
Key '2' -> bit 1 of 'A'

If block 4 was chosen Instead (i.e A = EF) then the information would come 
in as:

Key '0' -> bit 0 of 'A'
Key '9' -> bit 1 of 'A'

You can think of the information coming into 'A' from the outside edges 
first, so that both '0' and '1' would both go to bit '0' of register 'A'.

For some games applications you may wish to allow all of the top row to be
read, and it it possible to read it all in one instruction (rather than 
the two instructions which would be reguired if we read one block at a 
time).
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This is done by fooling the doorman into giving you two lots of 
Information at once:
e.g. A = 1 1 1 0 0111 -E7
Note that both bits '3' and '4' are 'off'.

This handshake tells the doorman that the CPU wants the information from 
block 3 and block 4, and that is what it will get. Of course the two lots 
of information get jumbled and it is not possible for you to tell whether 
key '0' or key '1' was pressed, for example - both would set bit 0 of 'A'.

i.e. '1' or '0' -> bit 0 of A 
”2' or '9' -> bit 1 of A 

etc

This is useful in movement games because it enables keys '5' and '8' to be 
used as the left and right direction arrows even though they belong to 
different blocks in the keyboard.

Note that if you use the instruction
IN R, (C)

where register 'C' specifies which door you want, then it is the contents 
of register '8' which define which keyboard block is being selected.

The other doors which will be of interest to those people trying to write 
a routine to enable them to load data or save data on cassette (it can be 
done) are obviously the cassette input/output doors.

These are doors 'FF' for sending information to the cassette, and door 
'FE' for getting information in, but the major problem involved is the 
timing of the data going out and going in. This kind of problem requires 
a lot of experience with machine language programming and calculations of 
the time required for each instruction path.
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PROGRAMMING

YOUR SINCLAIR
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PLANNING YOUR MACHINE LANGUAGE PROGRAM

Machine language programming is extremely flexible in that it allows you 
to do anything at all.

Since all the higher level languages ultimately have to come down to 
machine language, it follows that anything you can program In Fortran or 
Cobol or any other language can be done 1n machine language.

With the additional benefit that the machine language program will be the 
faster one.

This total flexibility can however also be a trap to the unwary 
programmer. With so much freedom, 1t it possible to do anything. Unlike 
the Sinclair's basic operating system, for example, there are no checks on 
whether the statement is a legal one.

Since all numbers you can enter will be an instruction of one kind or 
another, the Z80 chip will process everything.

But even beyond the problems of checking whether the Syntax is legal, 
machine language programming has no constrains on your logic - you can 
perform functions, jumps, etc which would be totally illegal in any higher 
level language.

It is therefore of the utmost importance to discipline yourself in the 
design of machine language programming. I cannot recommend too highly the 
concept of the 'top-down' approach in programming 1n general, but 
especially 1n machine language programming.

The 'Top-down' approach forces you to break down the problem into smaller 
units, and enables you to check the logic of your design without doing any 
coding for a long time.
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Suppose you wanted to write a lunar lander program:
The very first approach might be something along the lines

machine language. Nor is 1t necessary to make that decision - the concept 
of the lunar lander program is not dependent on the coding.

Instr Display Instruction 
Jump back to Instr till n/Hne pressed

Draw 
Land

Draw landscape, start lander at top 
Move lander 
If fuel finished go to crash 
Jump back to land 1f not ground

Ground Print congratulations
Jump back to Instr for next go

Crash Print commiserations on bad landing 
Jump back to instr for next go

Notice how 
no decision

this 'program' is written totally In English. At this stage, 
has been made whether the program 1s to be written in BASIC or

Now comes the part of logic testing.
You play the part of the computer and see if all the possibilities you 
wish to see included in the program are covered.

Are there any jumps to things you meant to write in but forgot? Is 
everything there? Are some routines redundent? Should some of the things 
be put into subroutines.

Let us look at the 'program' again - oh, oh: we forgot to allow any way to 
finish the program!

The above logic might be fine for some applications, such as an arcade 
machine, but in your program you decide you would like to be able to turn 
the program off.

We now change the last part of the program as follows:

Ground Print congratulations 
Jump to finish

Crash 
Finish

Print commiserations on bad landing 
Ask player if finished
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If no, Jump to Instr 
If yes, stop

Note that we have used labels to describe certain lines In the program. 
These are very valuable, the more so if you choose short labels which are 
descriptive 1n their meaning.

Once this level is finished, you move one level down to do the same thing 
to one of the lines or modules above.
This is why this approach is called the Top Down approach.

For example, we can expand the 'finish' module above:

Finish Clear screen
Print “Would you like to stop now?"
Scan keyboard for input 
If input « yes then stop 
Jump to instr

The other benefit of the top down approach is that you can test and run a 
particular module on its own, so that Is is ready for the final program.

Let us go down one level further again, and look at the 
Clear screen 

line in more detail.

By this stage we do have to decide on what language we will write the 
program in, and let us choose machine language on the Sinclair.

If you were writing in BASIC, all you would have to say is : 900 CIS, but 
in machine language that simple sentence, 'Clear Screen' can be deceptive 
(because of the way the Sinclair uses the screen display we must remember 
to fill in the end of linesl).

We might therefore do something like:
Clear Find screen beginning

Fill next 768 positions with blanks 
Get screen beginning again
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F1U that byte with 'End-Line' 
For lines 1 to 24 
t Skip next 32 bytes 
! Fill next byte with 'End-Line

Next line

We still haven't done any coding, but obviously the approach Is based on 
machine language. The next level down Is the one which does the coding, 
so let us look at filling the screen with blanks:

Clear LD HL, (Screen) ¡Screen start
LD BC, 768 ¡Bytes to clear
LD 0,0 ;D = blank

Loop LD (HL) ,D ¡Fill blank
INC HL ¡Next position
DEC BC ¡Reduce count
LD A,B
OR C ¡Test if BC ■ 0
JR NZ.Loop ¡Again if not end

Now you can deal with programs of such length quite easily and In this way 
build up very complex programs Indeed.
By the way, you no doubt understand now why machine language programs tend 
to be so long and why people Invented the higher language programs!

EXERCISES:

There are more ways than one to write any particular routines, so let us 
look at the simple clear screen routine written above.

This could be handled by several different approaches.

EXERCISE 1:

Can you think of a way that would enable the Loop to blank 768 positions 
without using the BC register, but using the B register only so that we 
may make use of the 'DJNZ' instruction?

EXERCISE 2:

Can you think of a way that would enable the 768 positions to be blanked 
using the more powerful 'LDIR' Instruction?
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Think carefully of what 'LOIR' does: It is not always necessary to have 
768 blank positions elsewherel

ANSWERS:

More than one possible answer can be "right" - the only test is does it 
work?

USING DJNZ:

CLEAR LD HL, (SCREEN)
LD A.O
LD B.A ¡SET 8=256
LD (HL),A ;
INC HL ¡FILL IN
LD (HL),A ; 3 X 256
INC HL ; BYTES
LD (HL),A 
INC HL 
DJNZ LOOP

USING LOIR:

CLEAR LD HL,(SCREEN) ¡SOURCE
PUSH HL
POP DE
INC DE ¡OEST - HL+1
LD BC.768 ¡HOW MANY
LD(HL),0 ¡1ST POS - 0
LDIR ¡MOVE IT

If you add up the 
bytes and the last

memory required, the first two methods each require 14 
13 bytes.
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DEBUGGING AND EDITING

YOUR MACHINE LANGUAGE PROGRAM

The first issue for you to consider after you have designed your program 
and know what it is you want it to achieve is for you to decide where to 
put it in memory.

Sounds simple? Not really on the Sinclair ZX 80 or ZX 81. If your 
program is only a few lines long, then there may not be any problem. You 
can just enter it again using 'Poke' commands, either manually or through 
a BASIC program just for that purpose.

In this case, all you need is to have spare 'RAM' memory for your program:

1000 LET PROGRAMSTART - 17000
1010 FOR I = 0 TO PROGRAMLENGTH
1020 POKE PROGRAMSTART+I, DATA(I)
1030 NEXT I

The machine code values are stored in an array specially set aside for 
this purpose. Note that this is fine for a short program, but not very 
efficient because each machine code byte occupies one variable location: 
This is 2 bytes on the ZX80 and 5 bytes on the ZX81.

The following are the possible storage locations for machine language 
programs:

FREE RAM MEMORY
REM STATEMENT
PRINT STATEMENT
VARIABLE ARRAYS

Each of these has certain advantages and disadvantages, so let us examine 
each in turn.
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A. FREE RAM MEMORY

This is OK for very short programs but the disadvantages are: 
RAM MEMORY IS SET TO ZERO 

BY 'RUN' OR 'GOTO' IN ZX81.
CANNOT BE SAVED ON TAPE>

These disadvantages make it almost impossible for programs of any length 
to be debugged or run from free'RAM.

B. DIRECT CODE 'POKED' INTO REM STATEMENT

Using this method, the actual code values are poked directly int the REM 
statement.
A line in the Basic program (usually the first one, so that its location 
in memory is known) is set up at the beginning with as many characters as 
expected in the machine language program.
EG. 100 REM AAAAAA -— (128 A'S)

——AAAAAA
110 ETC.

The actual contents of the REM statement is not important - you can use A, 
X, graphic characters or whatever.

ADVANTAGES:
STARTING ADDRESS IS KNOWN 
(THIS IS VERY VALUABLE FOR SUBROUTINES) 
CODE IS IN DIRECT FORM FOR RUNNING.

DISADVANTAGES:
DIFFICULT TO INSERT ADDITIONAL CODE.
SOME CHARACTERS ARE UNLISTABLE (OLD ROM

ONLY - CAUSES PROBLEMS.)
PROGRAM HANGS UP IF '118' IS POKED IN - 

EG> CP 118.

Nonetheless this method offers many advantages, and is especially useful 
for storing subroutines which have already been debugged.
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C. HEX CODE STORED IN REH STATEMENT OR IN PRINT STATEMENTS:

In this situation, the direct code is not stored but rather the 
hexidecimal representation.
EG.

1120 REM CDA01 - (AS MUCH CODE AS REQUIRED) —

OR 560 PRINT "CDA01 — ETC —"

This means that you need to have part of your Basic program (or a special 
USR routine) devoted to translating the hexidecimal representation and 
then poking the codes into free memory or into arrays as required.

As many lines a necessary can be used. You might decide to have 16 
instructtons/baslc line, or have each line contain a particular subroutine 
or module for easy manipulation.

ADVANTAGES:
'LISTING' CAN BE EASILY VIEWED
INSERTIONS AND DELETIONS ARE EASY

DISADVANTAGES:
PROGRAM CODE TAKES THREE TIMES AS MUCH
ROOM AS CODE ONLY WOULD

SPECIAL LOADING ROUTINE REQUIRED.

USE OF LOADING ROUTINE REQUIRED WITH 
EVERY ALTERATION TO CODE.

Despite its advantages this is probably the best way to develop and debug 
long programs. Once they have been fully tested, the REM or PRINT 
statement is no longer required and the code can be stored as direct code 
in a REM statement or in an array.

D. DIRECT CODE STORED IN AN ARRAY

This is probably the best place to store your machine code program once 1t 
has been fully debugged and tested - except for subroutines!
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An array is dimensioned as the first line of the 'Basic' program: 
100 DIM A(100)

In this way, the array is the first variable to be stored and its starting 
can be obtained by using the system variables.

The code is 'Poked' into the array either by the 'Basic' program or by 
you.

The main benefit stems from the fact that the code can then be easily 
'saved' on to tape and is ready to run. You also have the protection of 
other people not being to read your code easily.

ADVANTAGES:

VERY COMPACT MODE OF STORING 
NO BASIC PROGRAMMING NEEDED 
PROGRAMS CAN BE SAVED 
NO PROBLEMS WITH SCREEN DISPLAY

DISADVANTAGES:

STARTING ADDRESS MUST BE COMPUTED 
(MAKES SUBROUTINES IMPOSSIBLE) 
DIFFICULT TO EDIT 
LIMITED IN LENGTH TO MAX ARRAY

MAJOR POINTS TO WATCH OUT FOR:

One of the worst pitfalls in testing and debugging machine language 
programs comes from the relative jump instructions.

Although these instructions are very powerful and extremely useful, they 
do make life somewhat difficult whenever a change has to be made.

At all times check that your calculations of the relative jumps are 
correct before running a program - one wrong calculation and your computer 
will display the 'Lost in Space' syndrome.

This means that when you are debugging a program, you must be especially 
careful not to insert or delete any instructions without first checking 
that these changes will not effect any relative jumpsl
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As It's almost Impossible to keep all these things in mind as you try to 
work out why the perfect program isn't functioning, it is a good idea to 
follow the following rules:

WHEN DELETING INSTRUCTIONS, REPLACE 
THE UNWANTED CODE BY 'NOP' (=00). 

IF INSERTING CODE LONGER THAN ORIGINAL 
USE 'JP PATCH' ( = C3 DD OD),

The 'NOP' is a very valuable instruction that we did not deal with in any 
of the earlier chapters.

The 'NOP' instruction means "NO OPERATION", and you can have as many of 
these as you like anywhere in your program without damage.

The code for “NO OPERATION" 1s so simple, you'll never forget it - ZERO!

When your program is finished and working to your satisfaction, you can 
clean things up by deleting all these 'NOP' -after working out the new 
relative jumps of course.

Inserting new code is more difficult, and Involves patching. It cannot be 
reconmended too highly for you to keep a notebook of editing you are 
making as you go along, so that when your program is working, you can 
bring back a semblance of order!

The "JP PATCH" instruction is three bytes long, so make sure any code you 
are replacing Is Included In the patch.

E.G. Original Code *
17300 LD B,56

LD HL,17312
But you decide that you really need to load BC not only B at location 
17300.

The original instruction is 2 bytes, while
LD BC.56

is a three byte instruction.



Let us look at the actual memory location contents:
17300 06
17301 38 ¡LD 8,56
17302 01
17303 AO
17304 43 ¡LD HL,17312

The solution is to put in the 'JP PATCH INSTRUCTION' at 17302. because 
this then destroys the first byte of the "LD HL, 17312“ instruction, we 
must now delete that instruction and include it in the patch.

The new listing will look like:
17300 JP 19000 ¡JUMP TO PATCH

19000 LD BC,56 ¡CORRECT CODE
LD HL,17312
JP 17303 ¡RETURN TO MAIN

Let us look at the memory locations again:
17300 C3
17301 38
17302 4A
17303 00 ;NOP
17304 00 ¡NOP

19000 01
19001 00
19002 38

etc.
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DISPLAYING 100 BYTES IN HEX

ZX 81 VERSION

100 PRINT "ENTER START"
110 INPUT S
120 LET S - INT (S/10)
130 CLS
140 FOR R ■ S TO S+9
150 PRINT 10*R ; ">"
160 FOR I • 0 TO 9
170 LET V • PEEK (10*R+I)
180 LET H - INT (V/16)
190 LET L ’ V - 16*H
200 PRINT CHR$(H+28); CHR$(L+28); "
210 NEXT I
220 PRINT
230 NEXT R
240 PRINT
250 PRINT "NEXT 100?”
260 INPUT 1$
270 LET S = S+10
280 IF CODE (1$) - 62 THEN GO TO 130

ZX 80 VERSION

Enter program as above, but alter lines 120 and 180 to read as follows: 

120 LET S - S/10
180 LET H - V/16
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MACHINE CODE EDITOR

ZX81 VERSION

100 PRINT "START?“
110 INPUT S
120 CLS
130 PRINT “MEMORY";TAB 10;"C0DE“
140 FOR I = 0 TO 10
150 LET V = PEEK (S+I)
160 GO SUB 500
170 PRINT S+I; TAB 7; A$;
180 INPUT A$
190 IF A$ = ““ THEN GO TO 220
200 LET V = 16 * CODE (A$) + CODE (A$(2)) - 476
210 POKE S+I, V
220 LET V = PEEK (S+I)
230 GO SUB 500
240 PRINT TAB 10; A$
250 IF V = 201 THEN GO TO 270
260 NEXT I
270 PRINT “CHANGES?";
280 INPUT A$
290 IF CODE (A$) = 62 THEN GO TO 120
300 PRINT " MORE?"
310 INPUT A$
320 LET S = S + 10
330 IF CODE (A$) = 62 THEN GO TO 120
340 CLS
350 PRINT "START FOR USR?"
360 INPUT S
370 PRINT USR (S)
380 STOP
500 LET H = INT (V/16)
510 LET L = V - 16 * H
520 LET A$ = CHR$ (H+28) + CHR$ (L+28)
530 RETURN

NOTE: This program will fit Into the standard IK ZX81 machine and allow 
code to be entered In hexadecimal format Into free memory, 'REM' 
statements (e.g. Line 90 REM AAAAAAAAAAA ), or Into variables (e.g. Line 
90 DIM A(4) ).

This program will also 'RUN' the machine language program if required. If 
you do not desire to 'RUN' the program, reply "XX“ to query “START FOR 
USR?"



MACHINE CODE EDITOR

ZX 80 VERSION

100 PRINT "START?"
110 INPUT S
120 CLS
130 PRINT "MEMORY","CODE"
140 FOR I = 0 TO 20
150 LET V » PEEK (S+I)
160 GO SUB 500
170 PRINT S+I, CHRS(H);CHR$(L) ";
180 INPUT AS
190 IF AS = "" THEN GO TO 220
200 LET V = 16+CODE (AS) + CODE (TLS(AS) ) - 476
210 POKE S+I, V
220 LET V = PEEK (S+I)
230 GO SUB 500
240 PRINT CHRS(H);CHRS(L)
250 IF V = 201 THEN GO TO 270
260 NEXT I
270 PRINT "CHANGES?”,
280 INPUT AS
290 IF CODE (A$) = 62 THEN GO TO 120
300 PRINT "MORE?"
310 INPUT AS
320 LET S = S+20
330 IF CODE (A$) » 62 THEN GO TO 120
340 CLS
350 PRINT "START FOR USR?”
360 INPUT S
370 PRINT USR (S)
380 STOP
500 LET H - V/16
510 LET L = V - 16*H + 28
520 LET H = H + 28
530 RETURN

Note: This program will fit into the standard IK ZX80 Machine and allow 
code to be entered in hexadecimal format into free memory, 'REM' 
statements (eg. line 90 REM AAAAAAAAAAA ), or into variables (eg. line 90 
DIM A(10) ).

This program will also 'RUN' the machine language program if required. If 
you do not desire to 'RUN' the program, reply "XX" to query "Start for 
USR?"
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PROGRAM TO LOAD CODE

FROM REM LINE TO ARRAY

The following program is for the ZX81 with additional memory. (A modified 
version of this program can easily be written for the ZX80.) Use the 
"Machine Code Editor" program and add the following lines:

90 REM AAA — at least 52 chars — AAA
100 DIM A(100)

Add the following lines at the end of the program as dummy code:

1000 REM ABCD
1010 REM 1234

The aim of this program is to transfer the code in the REM lines starting 
at line 1000 into the Array 'A*. The REM lines can be any length; the 
only requirement is that code Is entered tn hexadecimal format - the 
program will crash if you do not have code as 2-digit pairs.

Now <RUN> the program and answer 16514 to the query “START?“. 16514 is 
the location of the first usable character in the REM statement in line 
90.

Enter code as overleaf, and when finished answer 16514 to query “Start for 
USR?". The 4 dummy codes should be transferred to the Array. To check on 
this, enter the following line without line number:

PRINT PEEK 16400 + 256 * PEEK 16401 <NEW L1NE>

This will return the address of the start of Array 'A*. Enter <GOTO 100> 
<NEW LINE> and answer that address for "START"?.

Note: Do not use <RUN> or <GOTO 1> as this will redimension Array 'A' and 
set all values to 0.

Contents of memory should be:
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01 64 00

Array 'A
Total memory 
used by array

no. dims 
no. elements

Dummy code from REM

• 100

MACHINE CODE:

DD 2A 10 40
01 00 41

LD IX, (16400)
LD BC,16640

INC BC
LD A, (BC)
CP EAH
JR NZ.FREM

START OF ARRAY 
POINTER BEFORE 
LINE 1000

IS THIS REM? 
IF NOT, AGAIN

03 
OA
FE EA
20 FA

FREM

03 NXTLIN INC BC
OA LD A,(BC) TAKE 1ST CHAR
D6 1C NXTCHR SUB 28 SUBTRACT 28
07 RCLA
07 RCLA
07 RCLA
07 RCLA MULTIPLY BY 16
6F LD L,A TEMP STORE
03 INC 8
OA LD A,(BC ) NEXT CHAR
D6 1C SUB 28 SUBTRACT 28
85 ADO A,L ADD VALUE OF

16*1ST CHAR
DD 77 06 LD (IX+6),A STORE IN ARRAY
DD23 INC IX
03 INC BC
OA LD A,(BC) TEST IF ENO
2E 75 LD L,75H
2C INC L L = 76H
BD CP L ENO OF LINE?
20 E7 JR NZ,NXTCHR IF NOT, GET

NEXT CHAR
03 INC BC
03 INC BC
03 INC BC
03 INC BC
03 INC BC SKIP LINE NO.
OA LD A,(BC)
FE EA CP EAH IS IT REM?
CO RET NZ FINISH IF NOT
18 DA JR NXTLIN ELSE GET CHARS

FROM NEXT LINE
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DRAUGHTS

It is possible for the standard IK Sinclair ZX81 to play draughts! Of 
course, this is only possible by using every trick in the book. (A 
similar machine language program could be written for the ZX80).

The board is shown on the screen as follows:

1
2
3
4
5
6
7
8

1 8 8 8 8
8 8 8 8
3 8 8 8 8

5
W W W W 
7 W W W W
W WWW

A BCDEFGH

(The outer numbers 1-8 and the designation of columns A - H are not 
shown on the screen - the only numbering included are the numbers 1,3,5 
and 7 as shown within the board).

The rules of the game the ZX81 plays follows the standard rules except 
that multiple jumps are not allowed and capture is not compulsory.

Reaching the end line results in the creation of a king (shown on the 
screen as inverse letter), which can only move one square at a time but is
allowed to jump backwards.

STRUCTURE OF THE PROGRAM:

In the standard IK version there is 
string variable that initially sets 
We must therefore resort to putting 
using <GOTO 1> to start the program.

also Insufficient room to retain the 
up the board in the program listing, 
that string variable in memory and
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The last space saving “trick" involves replacing all 1- and 2-digit 
numbers in the listing: each number in a ZX81 listing takes up 6bytes! 
This is true even if your number is only a single digit. We therefore 
make liberal use of constructs such as VAL"2” or CODE"W" which only 
require 4 bytes.

The program is also broken down into 3 different programs, the last two of 
which overlay the previous ones. This is the only way to enter so much 
information into the Sinclair ZX81 IK.

The structure is as follows:

Program 1: PUT MACHINE CODE ROUTINE INTO
REM STATEMENT

Program 2: DEFINE THE BOARD FOR PLAY

Program 3: DRAW THE BOARD
INPUT PLAYER'S MOVE
CHECK PLAYER MOVE VALIDITY
MAKE COMPUTER'S MOVE 

(CALL TO USR ROUTINE) 
GO TO NEXT PLAYER INPUT

DRAUGHTS:

PROGRAM 1:

100 REM 111111111111111111111111
111111111222222222222222222222222 The REM statement
222222222333333333333333333333333 must have 175 chars
333333333444444444444444444444444 in it.
444444444555555555555555555555555 
55555555566666666666666666

This part of the program is to input the machine language code into the 
REM statement. The code is listed at the end of this section, commencing 
at location 4082H = 16514. Use a modified version of the machine code 
editor to enter this code into the REM statement.

Once you have entered the machine language code, the listing of the 
machine code editing program is no longer required.
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DRAUGHTS

PROGRAM 2

At this stage you should have only line 100 from the program above 
contlaning the machine code.
Add the following lines: 

120 LET A$ = “1 BMMMBaBMoB*
3 B B ft B *• B a “ B ft® ft 5 ffl ft
ffl W ft W a W ft« “• 7 W ft W “• W “W W“WftWft

U

The graphics character Is obtained 
by using GRAPHICS and <Shift> <A>

150 FOR L • VAL “1" TO VAL “8"
160 PRINT A$ ( TO VAL “8" )
170 LET A$ =■ A$ ( VAL “9" TO )
180 NEXT L
200 INPUT A$
310 IF USR 16514 > VAL “0“ THEN GOTO 200

This program will display the board on to the screen and test the machine 
language routine entered in Program 1.

The screen Is saved In the string variable A$, and is printed in 8 lines. 
It is essential that a minimum configuration screen is set up, so that the 
structure in memory of the board is as follows:

IT] 1 8 8 8 BfflB B 8 B 03 —

(where the symbol 0 is used to represent END-OF-LINE). If you check this 
out this means that all legal moves are limited to increases and decreases 
of 8 or 10 bytes in memory.

Users with additional memory connected to the ZX81 should add the 
following lines:

130 POKE 16389, 76
140 CLS

This will ensure that a minimum configuration screen is set up.
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RUNNING PROGRAM 2

Press <RUN>. The screen will be displayed as shown above, and the ZX81 
will be waiting for a string input. Press <NEW LINE> to see the 
computer's first move. You should see the computer move its first piece 
from G3 to H4.

You can continue to press <NEW LINE» to see what the computer would do 
next if that was its position. If you so desire you can change the string 
variable in 120 to set up any starting position.

PREPARING FOR PROGRAM 3

Enter the following line into your listing: 
130 STOP

and then press <RUN>. Delete lines 120 and 130 and SAVE your program so 
far.

This has the effect of storing the string variable in memory without the 
need to keep it in the program listing. (Users with more than IK memory 
do not need to do this - retain your original lines 120 - 140).

DRAUGHTS
PROGRAM 3

At this stage you should have lines 100, lines 150 - 180, and lines 200 
and 310. The string variable A$ is stored in memory, so do not press 
<RUN> or <CLEAR> as this will destroy the contents of A$.

Add the following lines to your program:

210 LET S - PEEK 16396 + VAL “256” * PEEK 16397
220 LET F = S + CODE A$ + VAL “9" * CODE A$

(VAL “2“ ) - VAL "298”
230 LET T = S + CODE A$ ( VAL "3" ) + VAL "9" *

CODE A$ ( VAL "4" ) - VAL "298"
240 LET M = (T + F) / VAL "2"
250 IF (PEEK F <> CODE "W" AND PEEK F <> CODE 

"W") OR (ABS (F-T) > VAL "10" AND PEEK M <>
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CODE “B" AND PEEK M <> CODE > OR (PEEK F 
< CODE "X" ANO F<T ) OR PEEK T <> CODE THEN 
GOTO 200

Letters In squares are Inverse 
characters obtained using GRAPHICS 
mode.

270 POKE T, CODE “W" + CODE * (PEEK F )
CODE "W" OR (T-S) < VAL “9")

The graphic character in this line 
is obtained in GRAPHICS mode by 
pressing <Space>

280 POKE F, CODE "B”
290 IF ABS (F-T) > VAL "10" THEN POKE M, CODE "B"
300 PAUSE CODE “W"

PLAYING DRAUGHTS:

As we mentioned at the beginning, if you only have IK you cannot use <RUN> 
as this will clear the variable so carefully saved. Use <GOTO 1> instead. 
(Users with additional memory have the string variable in the listing so 
can use <RUN>.)

You should already have tested Program 2 by the time you come to this 
point, so you already know the display routine works and the machine 
language routine works. The additions in Program 3 are the player's moves 
and checking if these moves are allowed (This is all in line 250: "F" is 
“from" and "T" is "to").

The input the computer is waiting for is a 4-character string, such as 
"A6B5". This means that you mean to move from square A6 to square B5.

As only the most rudimentary numbering has been included in the screen, 
you may find it useful to keep a properly numbered board by the computer 
when playing.

If you should wish to play a second game, you cannot simply use <GOTO 1> 
again, as the string variable A$ has been deleted from memory. You will 
need to either reload the program from cassette or re-enter on the edit 
line the string variable A$ as in line 120. You can use this to also 
enter different positions you wish to examine - eg. giving the computer a 
head start.
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OO1OO F
OO11O » Z01 DRAUGHTS PROGRAM
00120 *

4082 00130 ORG 16514
00140 F

403C 00150 FROM EQU 16444
403E 00160 TO EQU 16446
4040 00170 CAFFRM EQU 16448
4042 00180 CAPTO EQU 16450
4044 00190 CAPT EQU 16452

00200 I
00210 F

0008 00220 BLANK EQU 8 F CODE FOR EMPTY
0027 00230 BLACK EQU 39 F CODE FOR 'B'
003C 00240 WHITE EQU 60 F CODE FOR 'W'

00250 F
00260 F
00270 F
00280 F MAIN PROGRAM
00290 F

4082 AF 00300 START XOR A
4083 213CAO 00310 LD HLrFROM FCANCEL 0
4086 OéOA 00320 LD B. IO FMOVES FR
4088 77 00330 CLEAR LD < HL >.A FMEMORY
4089 23 00340 INC HL
408A 1OFC 00350 DJNZ CLEAR

00360 F
408C 0648 00370 LD B.72 FB-BOARD
408E 2AOC4O 00380 LD HL.< 16396 > FHL -> BO
4091 E5 00390 PUSH HL F SAVE

00400 F
00410 F
00420 F THIS SECTION CHECKS EACH PIECE
00430 F ON THE BOARD FOR: POSSIBLE MOVES
00440 F
00450 F IF POSITION HAS BLACK PIECE OR
00460 F BLACK KING. SUBROUTINE TEST IS
00470 F CALLED TO SEE IF ANY POSSIBLE
00480 F MOVES OR CAPTURES EXIST.
00490 F

4092 7E 00500 NEXT LD Art HL )
4093 FEA7 00510 CP BLACK+128 FIS IT OUR KIN
4095 2812 00520 JR ZrKNGFND F YES =■> KING Fi
4097 FE27 00530 CP BLACK FIS IT PIECE 7
4099 2O1A 00540 JR NZrENDSCH ? NO -> TRY NEX
409B 110800 00550 MANFND LD DE .8 F
409E CDF14O 00560 CALL TEST F JUMPS FOR
40A1 IIOAOO 00570 LD DE. 10
4044 CDF140 00580 CALL TEST F BLACK PIECI
40A7 180C 00590 JR ENDSCH
40A9 11F6FF 00600 KNGFND LD DE.-10
40AC CDF140 00610 CALL TEST F JUMPS FOR
40AF 11F8FF 00620 LD DE.-8
40B2 CDF140 00630 CALL TEST F BLACK KING
40B5 23 00640 ENDSCH INC HL F MOVE TO NEXT POS
40B6 1ODA 00650 DJNZ NEXT FCONTINUE IF NOT

00660 F
00670 F

40B8 113C4O 00680 MOVEIT LD DE.FROM FROUTI NE TO SHIFT
40BB 214340 00690 LD HL.CAPTO+1 FCAPFRM & CAP
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34 00700 INC < HL > »TO "FROM" 1 "TO"
35 00710 DEC (HL > »IF CAPTURE POSS
010400 00720 LD BC,4
2002 00730 JR NZ,CAPOK
OEOO 00740 LD C,0
D5 00750 CAPOK PUSH DE
D5 00760 PUSH DE
El 00770 POP HL
09 00780 ADD HLrBC
OEO4 00790 LD C,4
EDBO

CD2C41

00800 
00810 » 
00820 * 
00830

LDIR

CALL FILL »FILL IN CAPTURE
3608 00840 LD < HL >,BLANK
El 00850 POP HL
CD2C41 00860 CALL FILL »FILL IN "FROM'»
7E 00870 LD A , < HL >
3608 00880 LD < HL >,BLANK
13 00890 INC DE
EB 00900 EX DE, HL
CD2C41 00910 CALL FILL »FIND POS "TO"
01 00920 POP DE
O13FOO 00930 LD BC,63 »CHECK IF KING
EB 00940 EX DE,HL »HAS BEEN
09 00950 ADD HLrBC »CREATED BY MOVE
EB 00960 EX DE, HL
E5 00970 PUSH HL
ED52 00980 SBC HL, DE
El 00990 POP HL
3802 O1OOO JR C,NOKING » C -> NO KING
F68O O1O1O OR 80H
77 01020 NOKING LD < HL >,A

:9
01030 » 
01040 RET »END OF MAIN ROUTINE

E5

01050 I 
01060 ; 
01070 I 
01080 t 
01090 » 
01100 » 
OHIO » 
01120 1 
01130 » 
01140 » 
01150 » 
01160 I 
01170 r 
01180 1 
01190 I 
01200 » 
01210 » 
01220 » 
01230 » 
01240 i 
01250 TEST

TEST SUBROUTINE

THIS SUBROUTINE RETURNS ALL 
REGISTERS UNCHANGED EXCEPT 
FOR REGISTER 'A'

IF LEGAL POSSIBLE IT IS RECORDED 
IF CAPTURE POSSIBLE, RECORDED

LEGAL MOVES WHICH WOULD LEAD TO 
IMMEDIATE CAPTURE ARE ONLY

RECORDED IF NO OTHER LEGAL 
HOME HAS BEEN FOUND TO DATE

PUSH HL ISAVE COMPUTER POS
19 01260 ADD HL, DE
7E 01270 LD A,< HL >
rE08 01280 CP BLANK »IS MOVE TO EMPTY?
2012 01290 JR NZ,ENEMY »IF NOT IS CAPT OK?
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OOOOO TOTAL ERRORS

40F8 E5 01300 PUSH HL
40F9 19 01310 ADD HL»DE »WALKING INTO TRA
40FA 7E 01320 LD A »(HL >
40FB E67F 01330 AND 7FH
40FD FE3C 01340 CP WHITE »ENEMY MAN OR KIN
4OFF 2822 01350 JR Z»LAST »IF TRAP MOVE ONL

01360 »AS LAST RESORT
4101 El 01370 MOVE POP HL
4102 223E4O 01380 LD ( TO >»HL
4105 El 01390 POP HL
4106 223C4O 01400 LD (FROM >»HL
4109 C9 01410 RET 1POSSIBLE MOVE RECORDED

01420 »
410A E67F 01430 ENEMY AND 7FH
410C FE3C 01440 CP WHITE 5 CAN WE CAPTURE?
410E 2O1A 01450 JR NZ»LOSE1 »IF NOT» FORGET
4110 E5 01460 PUSH HL
4111 19 01470 ADD HL »DE
4112 7E 01480 LD A»( HL >
4113 FEO8 01490 CP BLANK »IS CAPTURE POSS?
4115 2012 01500 JR NZ»L0SE2 »NEVER MIND
4117 224240 01510 LD < CAPTO >»HL
411A El 01520 POP HL
411B 224440 01530 LD < CAPT )»HL
411E El 01540 POP HL
411F 224040 01550 LD ( CAPFRM >»HL
4122 C9 01560 RET »CAPTURE RECORDED

01570 »
4123 3A3F4O 01580 LAST LD A»< TO+1 >
4126 A7 01590 AND A
4127 28D8 01600 JR Z»MOVE »NO OTHER MOVES E
4129 El 01610 L0SE2 POP HL »DON'T RECORD
412A El 01620 LOSE1 POP HL
412B C9 01630 RET

01640 »
01650 »
01660 »
01670 » SUBROUTINE TO FIND POSITION
01680 » TO BE FILLED NEXT
01690 »
01700 1 THIS SUBROUTINE LOADS HL WITH (HL
01710 » INPUT» HL VARIABLE WHERE POS IS S
01720 1 OUTPUT » HL CONTAINS POS STORED
01730 1 DESTROYED» DE IS CHANGED BY SUBRO
01740 » ( ON RETURN CONTAINS VARIABLE+1
01750 »

412C 5E 01760 FILL LD E»< HL >
412D 23 01770 INC HL
412E 56 01780 LD D»( HL >
412F EB 01790 EX DE» HL
4130 C9 01800 RET

01810 t
01820 »

0000 01830 END
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FLAG OPERATION SUMMARY TABLE

INSTRUCTION C z P/V s N H COMMENTS

ADC HL, SS # # V # 0 X 16-bit add with carry
ADX s; ADD s # # V # 0 # 8-bit add or add with carry
ADD DD, SS # — — — 0 X 16-bit add
AND s 0 # p # 0 1 Logical operations
BITb.s — * X X 0 1 State of bit b of location s is 

copied into the Z flag
CCF # — — — 0 X Complement carry
CPD; CPDR; CPI; CPIR — # # X 1 X Block search instruction 

Z=1 if A=(HL), else Z=0 
P/V=1 if BC^O, otherwise
P/V=0

CPs # # V # 1 # Compare accumulator
CPL — — — — 1 1 Complement accumulator
DAA # # p # — # Decimal adjust accumulator
DECs — # V # 1 # 8-bit decrement
IN r, (C) — # p # 0 0 Input register indirect
INCs — # V # 0 # 8-bit increment
IND; INI - # X X 1 X Block input Z=0 if B#0 

else Z=1
INDRJNIR - 1 X X 1 X Block input Z=0 if B#0 

else Z=1
LD A,l ; LD A,R — # IFF # 0 0 Content of interrupt enable 

Flip-Flop is copied into the 
P/V flag

LDD; LDI — X 4* X 0 0 Block transfer instructions
LDDR; LDIR - X 0 X 0 0 P/V=1 if BCy0, otherwise

P/V=0
NEG # # V # 1 # Negate accumulator
OR s 0 # P # 0 0 Logical OR accumulator
OTDR; OTIR - 1 X X 1 X Block output; Z=0 if B=/0 

otherwise Z=1
OUTD; OUTI - # X X 1 X Block output; Z=0 if B/0 

otherwise Z=1
RLA; RLCA; RRA; RRCA # — — — 0 0 Rotate accumulator
RLD; RRD — # p # 0 / Rotate digit left and right
RLS; RLC s; RR s; RRC s 

SLA s; SRA s; SRL s
# # p # 0 0 Rotate and shift location s

SBC HL, SS # # V # 1 X 16-bit subtract with carry
SCF 1 — — — 0 0 Set carry
SBC s; SUB s V 1 8-bit subtract with carry
XOR x 0 p 0 0 Exclusive OR accumulator
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SYMBOL
C

Z

S

P/V

H

N

OPERATION
Carry flag. C=1 if the operation produced a 
carry from the most significant bit of the operand 
or result.
Zero flag. Z=1 if the result of the operation is 
zero.
Sign flag. S=1 if the most significant bit of the 
result is one, ie a negative number.
Parity or overflow flag. Parity (P) and overflow 
(0) share the same flag. Logical operations affect 
this flag with the parity of the result while 
arithmetic operations affect this flag with the 
overflow of the result.
If P/V holds parity, P/V=l if the result of the 
operation is even, P/V=0 if result is odd.
If P/V holds overflow, P/V=l if the result of the 
operation produced an overflow.
Half-carry flag. H=1 if the add or subtract 
operation produced a carry into or borrow from bit 
4 of the accumulator.
Add/Subtract flag. N=1 if the previous operations 
was a subtract.

H and N flags are used in conjunction with the 
decimal adjust instruction (DAA) to properly 
correct the result into packed BCD format following 
addition or subtractionusing operands with packed 
BCD format.

# The flag is affected according to the result of the
operation.
The flag is unchanged by the operation.

0 The flag is reset (=0) by the operation.
1 The flag is set (=1) by the operation.
X The flag result is unknown.
V The P/V flag is affected according co the overflow

result of the operation.
P P/V flag is affected according to the parity result

of the operation.
r Any one of the CPU registers A,B,C,D,E,H,L.
s Any 8-bit location for all the addressing modes

allowed for the particular instructions.
SS Any 16-bit location for all the addressing modes 

allowed for that instruction.
R Refresh register
n 8-bit value in range 0-255.
nn 16-bit value in range 0-65535.



Z80-CPU INSTRUCTIONS SORTED BY OP-CODE

HEXADECIMAL MNEMONIC HEXADECIMAL MNEMONIC HEXADECIMAL MNEMONIC

00 NOP 49 LD C,C 92 SUB D
01 xxxx LD BC.NN 4A LD C,D 93 SUB E
02 LD (BC).A 4B LD C,E 94 SUB H
03 INC BC 4C LD C,H 95 SUB L
04 INC B 4D LDC.L 96 SUB (HL)
05 DEC B 4E LD C,(HL) 97 SUB A
06XX LD B,N 4F LD C,A 98 SBC A,B
07 RLCA 50 LD D,B 99 SBC A,C
08 EX AF, AF' 51 LD D,C 9A SBC A,D
09 ADD HL.BC 52 LD D,D 9B SBC A,E
0A LD A, (BC) 53 LD D,E 9C SBC A,H
0B DEC BC 54 LD D.H 9D SBC A,L
OC INC C 55 LD D,L 9E SBC A,(HL)
OD DEC C 56 LD D,(HL) 9F SBC A,A
OEXX LD C,N 57 LD D,A AO AND B
OF RRCA 58 LD E,B A1 AND C
10XX DJNZ DIS 59 LD E,C A2 AND C
11 XXXX LD DE,NN 5A LD E.D A3 AND E
12 LD (DE),A 5B LD E.E A4 AND H
13 INC DE 5C LD E,H A5 AND L
14 INC D 5D LD E,L A6 AND (HL)
15 DEC D 5E LD E,(HL) A7 AND A
16XX LD D,N 5F LD E,A A8 XOR B
17 RLA 60 LD H,B A9 XOR C
18XX JR DIS 61 LD H.C AA SOR D
19 ADD HL,DE 62 LD H,D AB XOR E
1A LD A,(DE) 63 LD H,E AC SOR H
1B DEC DE 64 LD H.H AD SOR L
1C INC E 65 LD H,L AE XOR (HL)
1D DEC E 66 LD H,(HL) AF XOR A
1EXX LD E,N 67 LD H,A BO OR B
1F RRA 68 LD L,B B1 OR C
20XX JR NZ.DIS 69 LD L,C B2 OR D
21XXXX LD HL,NN 6A LD L,D B3 OR E
22XXXX LD (NN),HL 6B LD L,E B4 OR H
23 INC HL 6C LD L,H B5 OR L
24 INC H 6D LD L,L B6 OR (HL)
25 DEC H 6E LD L,(HL) B7 OR A
26XX LD H,N 6F LD L,A B8 CP B
27 DAA 70 LD (HL),B B9 CP C
28XX JR Z,DIS 71 LD (HL),C BA CP D
29 ADD HL,HL 72 LD (HL),D BB CP E
2AXXXX LD HL,(NN) 73 LD (HL),E BC CP H
2B DEC HL 74 LD (HL),H BD CP L
2C INC L 75 LD (HL),L BE CP (HL)
2D DEC L 76 HALT BF CP A
2EXX LD L,N 77 LD (HL),A CO RET NZ
2F CPL 78 LD A,B C1 POP BC
30XX JR NC,DIS 79 LD A,C C2XXXX JP NZ.NM
31XXXX LD SP,NN 7A LD A.D C3XXXX JP NM
32XXXX LD (NN),A 7B LD A.E C4XXXX CALL NZ,NM
33 INC SP 7C LD A,H C5 PUSH BC
34 INC (HL) 7D LD A,L C6XX ADD A,N
35 DEC (HL) 7E LD A,(HL) C7 RSTO
3620XX LD (HL),N 7F LD A,A C8 RET Z
37 SC F 80 ADD A,B C9 RET
38XX JR C,DIS 81 ADD A,C CAXXXX JP Z.NM
39 ADD HL,SP 82 ADD A,D CCXXXX CALL Z,NN
3AXXXX LD A,(NN) 83 ADD A,E CDXXXX CALL NN
3B DEC SP 84 ADD A,H CEXX ADC A,N
3C INC A 85 ADD A,L CF RST8
3D DEC A 86 ADD A,(HL) DO RET NC
3EXXXX LD A 87 ADD A,A D1 POP DE
3F CCF 88 ADC A,B D2XXXX JP NC.NN
40 LD B,B 89 ADC A,C D3XX OUT (N),A
41 LD B,C 8A ADC A,D D4XXXX CALL NC,NN
42 LD B,D 8B ADC A,E D5 PUSH DE
43 LD B,E 8C ADC A,H D6XX SUB N
44 LD B,H, 8D ADC A,L D7 RST 10H
45 LD B,L 8E ADC A,(HL) D8 RET C
46 LD B,(HL) 8F ADC A,A D9 EXX
47 LD B,A 90 SUB B DAXXXX JP C,NN
48 LD C,B 91 SUB C DBXX IN A,(N)
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DCXXXX CALL C,NN CB28 SRA B CB79 BIT7.C
DEXX SBC A,N CB29 SRA C C37A BIT 7,D
DF RST 18H CB2A SRA D CB7B BIT 7,E
EO RET PO CB2B SRA E CB7C BIT 7,H
E1 POP HL CB2C SRA H CB7D BIT7.L
E2XXXX JP PO.NN CB2D SRA L CB7E BIT 7,(HL)
E3 EX (SP),HL CB2E SRA (HL) CB7F BIT 7.A
E4XXXX CALL PO.NN CB2F SRA A CB80 RESO,B
E5 PUSH HL CB38 SRL B CB81 RESO,C
E6XX AND N CB39 SRL C CB82 RESO,D
E7 RST 20 H CB3A SRL D CB83 RESO,E
E8 RET PE CB3B SRL E CB84 RESO,H
E9 JP (HL) CB3C SRL H CB85 RESO,L
EAXXXX JE PE NN SRL L CB86 RESO,(HL)
EB
ECXXXX

EX DE,HL 
CALL PE,NN

CB3E
CB3F

SRL (HL)
SRL A

CB87
CB88

RESO,A 
RES 1 ,B

EEXX XOR N CB40 BIT 0 B CB89 RES 1,C
EF 
FO
F1
F2XXXX

RST 28H 
RET P 
POP AF 
JR P,NN

CB41 
CB42 
CB43 
CB44 
CB45 
CB46 
CB47 
CB48 
CB49 
CB4A 
CB4B

BIT O^C 
BIT O.D 
BIT O.E 
bit O.H 
BIT O.L 
BIT 0,(HL) 
BIT 0,A 
Bit 1.B 
BIT 1,C 
BIT 1,D 
BIT 1,E

CB8A 
CB8B 
CB8C 
CB8D

RES 1,D'
RES 1,E
RES 1,H
RES 1,L

F3 
F4XXXX
F5
F620XX

D1
CALL P,NN
PUSH AF
OR N

CB8E
CB8F
CB90
CB91

RES 1,(HL)
RES 1,A 
RES2,B 
RES2.C

F7
F8
F9

RST 30H 
RET N 
LD,SP,HL

CB92
CB93
CB94

RES2,D
RES2.E
RES 2,H

FAXXXX JP N,NN CB4C BIT 1 ,H CB95 RES2.L
FB E1 CB96 RES2,(HL)
FCXXXX 
FE20XX

CALL M,NN 
CP N

CB4D
CB4E

BIT 1 ,L
BIT 1,(HL)

CB97
CB98

RES2,A
RES3.B

FF RST 38H CB4F BIT 1 ,A CB99 RES3,C
CBOO RLC 8 CB50 BIT 2,B CB9A RES3.D
CBO1 RLC C CB51 BIT 2,C CB9B RES 3,E
CB02 RLC D CB52 BIT 2,D CB9C RES e,H
CBO3 RLC E CB53 B11 2 ,E CB9D RES3.L
CB04 RLC H CB54

CB55
CB56
CB57
CB58
CB59

BIT 2,H 
BIT 2,L 
BIT2,(HL) 
BIT 2,A 
BIT 3,B 
BIT3,C 
BIT 3,D 
BIT 3 E

CB9E RES 3,(HL)
CB05
CBO6

RLC L
RLC (HL)

CB9F
CBAO

RES3,A
RES4.B

CBO7 RLC A CBA1 RES4,C
CB08 RRC B CBA2 RES4,D
CB09
CBOA

RRC C
RRC D

CB5A
CB5B

CBA3
CBA4

RESe,E 
RESe.H

CBOB 
CBOC 
CBOD

RRC E
RRC H
RRC L

CB5C
CB5D
CB5E

BIT 3’H
BIT 3,L
BIT 3,(HL)

CBA5
CBA6
CBA7

RES4,L
RES4,(HL)
RES4.A

CBOE 
CBOF 
CB1O 
CB11 
CB12 
CB13 
CB14

RRC (HL) 
RRC A 
RL B 
RL C 
RL D 
RL E 
RL H

CB5F
CB60
CB61
CB62
CB63
CB64
CB65

BIT 3,A 
BIT 4,B 
BIT 4,C 
BIT 4,D 
BIT 4,E 
BIT 4,H 
BIT4.L

C B/X8 
CBA9 
CBAA 
CBAB 
CBAC 
CBAD 
CBAE 
CBAF

RES 5,B 
RES5,C 
RES5.D 
RES 5,E 
RES 5.H 
RES5,L 
RES5,(HL) 
RES 5 ACB15 RL L CB66 BIT4,(HL) CBBO RES6,B
RES6,C
RES 6 D

CB16 RL (HL) CB67 BIT4,A CBB1
CB17 RL A CB68 BIT 5,B CBB2CB18 RR B CB69 BIT 5,C CBB3 RES 6^E 

RES6.H 
RES 6,L 
RES6,(HL) 
RES 7,A 
RES 7,B 
RES 7,C 
RES 7,D 
RES 7,E 
RES 7,H 
RES 7,L 
RES 7,(HL) 
RES 7,A 
SET 0,B 
SET 0,C 
SET 0,D

CB19 RR C CB6A BIT 5,D CBB4CB1A RR D CB6B BIT 5,E CBB5CB1B 
CB1C 
CB1D 
CB1E 
CB1F 
CB20 
CB21 
CB22 
CB23 
CB24 
CB25
CB26 
CB27

RR E 
RR H 
RR L 
RR (HL) 
RR A 
SLA B 
SLA C 
SKA D 
SLA E 
SLA H 
SLA L 
SLA (HL) 
SLA A

CB6C 
CB6D 
CB6E 
CB6F 
CB70 
CB71 
CB72 
CB73 
CB74 
CB75 
CB76 
CB77 
CB78

BIT 5,H 
BIT 5,L 
BIT 5,(HL) 
BIT5,A 
BIT6,B 
BIT 6,C 
BIT 6,D 
BIT 6,E
BIT 6,H 
BIT 6,L
BIT 6,(HL) 
BIT 6,A 
BIT 7,B

CBB6 
CBB7 
CBB8 
CBB9 
CBBA 
CBBB 
CBBC 
CBBD 
CBBE 
CBBF 
CBCO 
CBC1 
CBC2
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CBC3 SET O,E DD4EXX LD C,(IX+d) ED56 IN 1
CBC4 SET O,H DD56XX LD D,(IX+d) ED57 LD A,1
CBC5 SET O.L DD5EXX LD E,(IX+d) ED58 IN E,(C)
CBC6 SET 0,(HL) DD66XX LD H,(IX+d) ED59 OUT (C),E
CBC7 SET 0,A DD6EXX LD L,(IX+d) ED5A ADC HL,DE
CBC8 SET 1.B DD70XX LD (IX+d),B ED5BXXXX LD DE,(NN)
CBC9 SET 1,C DD71XX LD (IC+d),C ED5E IM 2
CBCA SET 1,D DD72XX LD (IX+d),D ED60 IN H,(C)
CBCB SET 1,E DD73XX LD (IX+d),E ED61 OUT(C),H
CBCC SET 1.H DD74XX LD (IX+d),H ED62 SBC HL,HL
CBCD SET 1,L DD75XX LD (IX+d),L ED67 RRD
CBCE SET 1,(HL) DD77XX LD (IX+d),A ED68 IN L,(C)
CBCF SET 1 ,A DD7EXX LD A,(IX+d) ED69 OUT(C),L
CBDO SET 2,B DD86XX ADD A,(IX+d) ED6A ADC HL,HL
CBD1 SET 2,C DD8EXX ADC A,(IX+d) ED6F RLD
CBD2 SET 2,D DD96XX SUB(IX+d) ED72 SBC HL,SP
CBD3 SET 2,E DD9EXX SBC A,(IX4d) ED73XXXX LD(NN),SP
CBD4 SET 2,H DDA6XX AND(IX+d) ED78 IN A,(C)
CBD5 SET 2,L DDAEXX XOR(IX+d) ED79 OUTICI.A
CBD6 SET 2,(HL) DDB6XX OR(IX+d) ED7A ADC HL.SP
CBD7 SET 2,A DDBEXX CP(IX+d) ED7BXXXX LDSP,(NN)
CBD8 SET 3,B DDE1 POP IX EDAO LDI
CBD9 SET 3,C DDE3 EX(SP),IX EDA1 CPI
CBDA SET 3,D DDE5 PUSH IX EDA2 INI
CBDB 
CBDC SET 3,E DDE9 JP(IX) EDA3 OUTISET 3,H DDF9 LD SP.IX EDA8 LDDCBDD SET 3,L DDCBXX06 RLC(IX+d) EDA9 CPOCBDE SET3.IHL) DDCBXXOE RRC(IX+d) EDAA INDCBDF SET 3,A DDCBXX16 RL(IX+d) EDAB OUTDCBEO SET 4,B DDCBXX1E RR(IX+d) ED80 LDIRCBE1 SET 4,C DDCBXX26 SLA(IX+d) ED81 CPIRCBE2 SET 4,D DDCBXX2E SRA(IX+d) ED82 INIRCBE3 SET 4,E DDCBXX3E SRL(IX+d) ED83 OTIRCBE4 SET 4,H DDCBXX46 BIT0,(IX+d) ED88 LDDRCBEb SET 4,L DDCBXX4E BIT 1,(IX+d) ED89 CPDRCBE6 SET4,(HL) DDCBXX56 BIT2,(IX+d) ED8A INDRCBE7 SET 4,A DDCBXX5E BIT 3,(IX+d) ED8B OTDRCBE8 St I b,B DDCBXX66 BIT 4,(IX+d) ED09 ADD IV,BCCBE9 SET 5,C DDCBXX6E BIT 5,(IX+d) ED19 ADD IV,DCCBEA SET 5,D DDCBXX76 BIT 6,(IX+d) ED21XXXX LD IV,NNCBEB St T b,E DDCBXX7E BIT 7,(IX+d) FD22XXXX LD(NN),IVCBEC SET 5,H DDCBXX86 RESO,(IX+d) FD23 INC IYCBED Sb I b,L DDCBXX8E RES 1,(IX+d) FD29 ADD IY IYCBEE St I b,(H L) DDCBXX96 RES 2,(IX+d) FD2AXXXX LD IY,(NN)

DDCBXX9E RES3,(IX+d) FD2B DEC IYCBFO
CBF1

St! 6,B 
SET 6.C 
SET 6,D 
SET 6,E 
SET 6.H 
SET 6,L 
SET 6,(HL) 
SET 6,A 
SET7.B 
SET 7,C 
SET 7,D 
SET 7,E 
SET 7,H 
SET 7,L 
SET 7,(HL) 
SET 7,A 
ADD IX,BC 
ADD IX,DE 
LD IX,NN 
LD(NN),IX 
INC IX 
ADD IX,IX 
LD IX,(NN) 
DEC IX 
INC(IX+d) 
DEC(IX+d)
LD(IX+d),N

DDCBXXA6 RES4,(IX+d) FD34XX INC(IY+d)
DDCBXXAE RES5,(IX+d) FD35XX DEC(IY+d)
DDCBXXB6 RES6,(IX+d) FD36XX20 LD(IY+d),N
DDCBXXBE RES7,(IX+di FD39 ADD IY,SP
DDCBXXC6 SETO,(IX+d) FD46XX LD B,(IY+d)

CBF6 DDCBXXCE
DDCBXXD6

SET 1,(IX+d) 
SET2,(IX-M)

FD3EXX
FD56XX

LD C,(IY+d)
LD D.(IY-Kj)

CBF8 
CBF9 
CBFA 
CBFB 
CBFC 
CBFD 
CBFE 
CBFF 
DD09 
DD19 
DD21XXXX 
DD22XXXX
DD23 
DD29 
DD2AXXXX 
DD2B 
DD34XX 
DD35XX 
DD36XX20

DDCBXXDE 
DDCBXXE6 
DDCBXXEE 
DDCBXXF6 
DDCBXXFE 
ED40
ED41
ED42
ED43XXXX
ED44
ED45
ED46 
ED47 
ED48 
ED49
ED4A
ED4BXXXX 
ED4D 
ED50
ED51

SET3,(IX+d) 
SET 4,(IX+d) 
SET5,(IX+d) 
SET 6,(IX+d) 
SET 7,(IX+d) 
IN B,(C) 
OUT(C),B 
SBC HL,BC 
LD(NN),BC 
NEG
RETN
IM 0
LD 1,A 
IN C,(C) 
OUT(C) ,C 
ADC HL.BC 
LD BC,(NN) 
RET1 
IN D,(C) 
OUT(C),D

FD5EXX 
FD66XX 
FD6EXX 
FD70XX 
FD71XX 
FD72XX 
FD73XX 
FD74XX 
FD75XX 
FD77XX 
FD7EXX 
FD86XX 
FD8EXX 
FD96XX 
FD9EXX 
FDA6XX 
FDAEXX 
FDB6XX 
FDBEXX

LD E,(IY+d) 
LD H,(IY+d) 
LD L,(IY+d) 
LD (IY+d),B 
LD (IY+d),C 
LD (lY-kj).D 
LD (IY+d),E 
LD (IY+d),H 
LD (IY+d),L 
LD (IY+d),A 
LD A,(IY+d) 
ADD A,(IY+d) 
ADC A,(IY+d) 
SUB(IY+d) 
SBC A,(IY+d) 
AND (lY+d) 
XOR (lY+d) 
OR (lY+d) 
CP (lY+d) 
POP IY 
EX (SP), IYDD39

DD46XX
ADD IX,SP 
LD B,(IX+d)

ED52
ED53XXXX

SBC HL.DE 
LD(NN),DE

FDE3

HL.DE
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FDE5 PUSH IY
FDE9 JP (IY)
FDF9 LDSP.IY
FDCBXX06 RLC(IY+d)
FDCBXXOE RRC(IY4d)
FDCBXX16 RL(IY+d)
FDCBXX1E RR(IY+d)
FDCBXX26 SLA(IY+d)
FDCBXX2E SRA(IY+d)
FDCBXX3E SRL(IY+d)
FDCBXX46 BITO,(IY+d)
FDCBXX4E BIT1,(IY+d)
FDCBXX56 BIT2,(IY+d)
FDCBXX5E BIT 3,(IY+d)
FDCBXX66 BIT 4,(IY+d)
FDCBXX6E BIT5,(IT+d)
FDCBXX76 BIT 6,(IY+d)
FDCBXX7E BIT7,(IY+d)
FDCBXX86 RESO,(IY+d)
FDCBXX8E RESI.(IYHi)
FDCBXX96 RES2,(IY+d)
FDCBXX9E RES3,(IY+d)
FDCBXXA6 RES4,(IY+d)
FDCBXXAE RES5,(IY+d)
FDCBXXB6 RES6,(IY+d)
FDCBXXBE RES7,(IY+d)
FDCBXXC6 SET O,(IY+d)
FDCBXXCE SET 1,(IY+d)
FDCBXXD6 SET 2,(IY+d)
FDCBXXDE SET 3,(IY+d)
FDCBXXE6 SET 4,(IY+d)
FDCBXXEE SET5,(IY-kj)
FDCBXXF6 SET 6,(IY+d)
FDCBXXFE SET7,(IY+d)
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ADC A, (HL) 8E BIT 2.B CB 50 CP n FE XX
ADC A, (IX+dis) DD8E XX BIT 2.C CB 51 CP E BB
ADC A,(IY+dis) FD 8E xx BIT 2.D CB 52 CP H BC
ADC A,A 8F BIT 2.E CB 53 CP L
ADC A,B 88 BIT 2.H CB 54 CPD
ADC A.C 89 BIT 2.L CB 55 CPDR
ADC A.D 8A BIT 3,(HL) CB 5E CPI
ADC A.n CE XX BIT 3,(IX+dis) DD CB XX 5E CPIR
ADC A.E 8B BIT 3,(IY+dis) FD CB XX 5E CPL
ADC A,H 8C BIT 3.A CB5F DAA
ADC A.L 8D BIT 3.B CB 58 DEC (HL) 35
ADC HL.BC ED4A BIT 3.C CB 59 DEC (IX+dis) DD 35 XX
ADC HL,DE ED 5A BIT 3.D CB 5A DEC (IY+dis) FD 35 XX
ADC HL,HL ED6A BIT 3.E CB 5B DEC A 3D
ADC HL.SP ED 7A BIT 3.H CB 5C DEC B 05
ADD A, (HL) 86 BIT 3.L CB 5D DEC BC OB
ADD A,(IX+dis) DD 86XX BIT 4,(HL) CB 66 DECC OD
ADD A.(IY+dis) FD 86XX BIT 4,(IX+dis) DD CB XX 66 DEC D 15
ADD A,A 87 BIT 4,(IY+dis) FD CB XX 66 DEC DE 1B
ADD A.B 80 BIT 4,A CB67 DEC E 1D
ADD A.C 81 BIT 4.B CB 60 DEC H 25
ADD A.D 82 BIT 4,C CB 61 DEC HL 2B
ADD A.n C6 XX BIT4.D CB 62 DEC IX DD 2B
ADD A.E 83 BIT 4,E CB 63 DEC IY FD 2B
ADD A,H 84 BIT4.H CB 64 DEC L 2D
ADD A.L 85 BIT4.L CB 65 DEC SP 3B
ADD HL.BC 09 BIT 5,(HL) CB6E DI F3
ADD HL,DE 19 BIT 5,(IX+dis) DD CB XX 6E DJNZ.dis 10 XX
ADD HL.HL 29 BIT 5,(IY+dis) FD CB XX 6E El FB
ADD HL.SP 39 BIT 5,A CB 6F EX (SP) .HL E3
ADD IX,BC DD 09 BIT 5.B CB 68 EX (SP) ,IX DD E3
ADD IX,DE DD 19 BIT5.C CB 69 EX (SP) .IY FD E3
ADD IX,IX DD 29 BIT 5.D CB 6A EX AF.AF' 08
ADD IX,SP DD 39 BIT5.E CB 6B EX DE,HL EB
ADD IY.BC FD 09 BIT5.H CB 6C EXX D9
ADD IY.DE FD 19 BIT5.L CB 6D HALT 76
ADD IY.IY FD 29 BIT 6,(HL) CB 76 IM 0 ED 46
ADD IY.SP FD 39 BIT 6,(IX+dis) DD CB XX 76 IM 1 ED 56
AND (HL) A6 BIT 6,(IY+dis) FD CB XX 76 IM 2 ED5E
AND (IX+dis) DD A6 XX BIT 6,A CB 77 IN A, (C) ED 78
AND (IY+dis) FD A6 XX BIT 6.B CB 70 IN A.port DB XX
AND A A7 BIT6.C CB 71 IN B, (C) ED 40
AND B AO BIT 6,D CB 72 IN C, (C) ED 48
AND C A1 BIT 6.E CB 73 IN D, (C) ED 50
AND D A2 BIT 6,H CB 74 IN E, (C) ED 58
AND n E6 XX BIT6.L CB 75 IN H,(C) ED 60
AND E A3 BIT 7,(HL) CB 7E IN L.(C) ED 68
AND H A4 BIT 7,(IX+dis) DD CB XX 7E INC (HL) 34
AND L A5 BIT 7,(IY+dis) FD CB XX 7E INC (IX+dis) DD 34 XX
BIT 0,(HL) CB 46 BIT 7.A CB 7F INC (IY+dis) FD 34 XX
BIT 0,(IX+dis) DD CB XX 46 BIT 7.B CB 78 INC A 3C
BIT 0,(IY+dis) FD CB XX 46 BIT 7.C CB 79 INC B 04
BIT 0,A CB 47 BIT 7.D CB 7A INC BC 03
BIT o,B CB 40 BIT 7,E CB 7B INC C OC
BITO.C CB 41 BIT 7.H CB 7C INC D 14
BIT 0,D CB 42 BIT 7,L CB 7D INC DE 13
BIT O.E CB43 CALL ADDR CD XX XX INC E 1C
BIT 0,H CB44 CALL C.ADDR DC XX XX INC H 24
BITO.L CB 45 CALL M.ADDR FC XX XX INC HL 23
BIT 1,(HL) CB 4E CALL NC.ADDR D4 XX XX INC IX DD 23
BIT 1,(IX+dis) DD CB XX 4E CALL NZ.ADDR C4 XX XX INC IY FD 23
BIT 1,(IY+dis) FD CB XX 4E CALL P.ADDR F4 XX XX INC L 2C
BIT 1.A CB4F CALL PE.ADDR EC XX XX INC SP 33
BIT 1.B CB48 CALL PO.ADDR E4 XX XX IND ED AA
BIT 1,C CB49 CALL Z.ADDR CC XX XX INCR ED BA
BIT 1.D CB 4A CCF 3F INI ED A2
BIT 1,E CB 4B CP (HL) BE INIR ED B2
BIT 1.H CB4C CP (IX+dis) DD BE XX JP (HL) E9
BIT 1,L CB 4D CP (IY+dis) FD BE XX JP (IX) DD E9
BIT 2,(HL) CB 56 CP A BF JP (IY) FD E9
BIT 2,(IX+dis) DD CB XX 56 CP B B8 JP ADDR C3 XX XX
BIT 2,(IY+dis) FD CB XX 56 CP C B9 JP C.ADDR DA XX XX
BIT 2,A CB 57 CP D BA JP M.ADDR FA XX XX

IY.DE
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JP NC.ADDR D2 XX XX LD BC.nn 01 XX XX LDDR ED B8
JP NZ.ADDR C2 XX XX LD C, (HL) 4E LDI ED AO
JP P.ADDR F2 XX XX LD C, (IX+dis) DD 4E xx LDIR ED BO
JP PE,ADDR EA XX XX LDC. (IY+dis) FD4E XX NEG ED 44
JP PO,ADDR E2 XX XX LD C,A 4F NOP 00
JP Z.ADDR CA XX XX LDC.B 48 OR (HL) B6
JR C,dis 38 XX LD C.C 49 OR (IX+dis) DD B6 XX
JR dis 18 XX LD C,D 4A OR (IY+dis) FD B6 xx
JR NC,dis 30 XX LD C,n OE XX OR A B7
JR NZ,dis 20 XX LD C.E 4B OR B BO
JR Z.dis 28 XX LD C,H 4C OR C B1
LD (ADDR) ,A 32 XX XX LD C,L 4D OR D B2
LD(ADDR) ,BC ED43 XX XX LD D, (HL) 56 OR n F6 XX
LD (ADDR) ,DE ED 53 XX XX LD D, (IX+dis) DD 56 XX OR E B3
LD(ADDR) ,HL ED 63 XX XX LD D, (IY+dis) FD 56 XX OR H B4
LD (ADDR) ,HL 22 XX XX LD D,A 57 OR L B5
LD (ADDR) ,IX DD 22 XX XX LD D.B 50 OTDR ED BB
LD (ADDR) , IY FD 22 XX XX LD D.C 51 OTIR ED B3
LD (ADDR) ,SP ED 73 XX XX LD D,D 52 OUT (C) ,A ED 79
LD (BC) ,A 02 LD D,n 16 XX OUT (C) ,B ED41
LD (DE) ,A 12 LD D,E 53 OUT (C) ,C ED 49
LD (HL) ,A 77 LD D,H 54 OUT (C) ,D ED51
LD (HL) ,B 70 LD D,L 55 OUT (C) ,E ED 59
LD (HL),C 71 LD DE. (ADDR) ED 5B XX XX OUT (C) ,H ED 61
LD (HL) ,D 72 LD DE.nn 11 XX XX OUT (C) ,L ED 69
LD (HL) ,n 36 XX LD E, (HL) 5E OUT part.A D3 port
LD (HL) ,E 73 LD E. (IX+dis) DD 5E XX OUTD ED AB
LD (HL) ,H 74 LD E, (IY+dis) FD 5E XX OUTI ED A3
LD (HL) ,L 75 LD E,A 5F POP AF F1
LD (IX+dis) ,A DD 77 XX LD E.B 58 POP BC C1
LD (IX+dis) ,B DD 70 XX LD E,C 59 POP DE D1
LD (IX+dis) ,C DD 71 XX LD E.D 5A POP HL E1
LD (IX+dis) ,D DD 72 XX LD E.n 1E XX POP IX DD E1
LD (IX+dis) ,n DD 36 XX XX LD E,E 5B POP IY FD E1
LD (IX+dis) ,E DD 73 XX LD E,H 5C PUSH AF F5
LD (IX+dis) ,H DD 74 XX LD E.L 5D PUSH BC C5
LD (IX+dis) ,L DD 75 XX LD H, (HL) 66 PUSH DE D5
LD (IY+dis) ,A FD 77 XX LD H, (IX+dis) DD 66 XX PUSH HL E5
LD (IY+dis) ,B FD 70 XX LD H, (IY+dis) FD 66 XX PUSH IX DD E5
LD (IY+dis) ,C FD 71 XX LD H,A 67 PUSH IY FD E5
LD (IY+dis) ,D FD 72 XX LD H,B 60 RESO, (HL) CB 86
LD (IY+dis) ,n FD 36 XX XX LD H.C 61 RESO, (IX+dis) DD CB XX 86
LD (IY+dis) ,E FD 73 XX LD H,D 62 RESO, (IY+dis) FD CB XX 86
LD (IY+dis) ,H FD 74 XX LD H,n 26 XX RES0,A CB 87
LD (IY+dis) ,L FD 75 XX LD H,E 63 RES 0,B CB 80
LD A, (ADDR) 3A XX XX LD H.H 64 RESO.C CB81
LD A, (BC) OA LD H,L 65 RES0,D CB82
LD A, (DE) 1A LD HL, (ADDR) ED 68 XX XX RESO.E CB 83
LD A, (HL) 7E LD HL,(ADDR) 2A XX XX RES0,H CB84
LD A, (IX+dis) DD 7E XX LD HL,nn 21 XX XX RESO,L CB 85
LD A, (IY+dis) FD 7E XX LD I,A ED 47 RES 1, (HL) CB8E
LD A,A 7F LD IX, (ADDR) DD 2A XX XX RES 1, (IX+dis) DD CB XX 8E
LD A,B 78 LD IX.nn DD 21 XX XX RES 1, (IY+dis) FD CB XX 8E
LD A,C 79 LD IY (ADDR) FD 2A XX XX RES 1,A CB8F
LD A,D 7A LD IY,nn FD 21 XX XX RES 1,B CB 88
LD A,n 3E XX LD L,A 6F RES 1,C CB 89
LD A,E 7B LD L,B 68 RES 1 ,D CB 8A
LD A,H 7C LD L,C 69 RES 1.E CB 8B
LD A,l ED 57 LD L,D 6A RES 1,H CB 8C
LD A,L 7D LD L,n 2E XX RES 1,L CB 8D
LD A,R ED 5F LD L,E 6B RES 2, (HL) CB 96
LD B, (HL) 46 LD L, (HL) 6E RES 2, (IX+dis) DD CB XX 96
LD B, (IX+dis) DD 46 XX LD L,(IX+dis) DD 6E XX RES 2, (IY+dis) FD CB XX 96
LD B, (IY+dis) FD 46 XX LD L, (IY+dis) FD 6E XX RES 2,A CB 97
LD B,A 47 LD L,H 6C RES2,B CB 90
LD B,B 40 LD L,L 6D RES 2,C CB 91
LD B,C 41 LD R,A ED4F RES 2,D CB 92
LD B,D 42 LD SP, (ADDR) ED 7B XX XX RES 2.E CB93
LD B.n 06 XX LD SP,nn 31 XX XX RES 2,H CB 94
LD B,E 43 LD SP,HL F9 RES2.L CB 95
LD B,H 44 LD SP.IX DD F9 RES 3, (HL) CB 9E
LD B,L 45 LD SP,IY FD F9 RES 3. (IX+dis) DD CB XX 9E
LD BC, (ADDR) ED4B XX XX LDD ED A8 RES 3, (IY+dis) FD CB XX 9E

RES 3,A CB9F
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RES 3,B CB 98 RLC C CB01 SET 1,L CB CD
RES 3,C CB 99 RLC D CB 02 SET 2, (HL) CB D6
RES 3,D CB 9A RLC E CB 03 SET 2, (IX+dis) DD CB XX D6
RES 3,E CB 9B RLC H CB 04 SET 2, (IY+dis) FD CB XX D6
RES3.H CB 9C RLC L CB 05 SET 2.A CB D7
RES3.L CB 9D RLCA 07 SET 2,B CB DO
RES4, (HL) CB A6 RLD ED6F SET 2.C CB D1
RES 4, (IX-Hdis) DD CB XX A6 RR (HL) CB 1E SET 2,D CB D2
RES 4, (IY+dis) FD CB XX A6 RR (IX+dis) DD CB XX 1E SET 2,E CB D3
RES4.A CB A7 RR (IY+dis) FD CB XX 1E SET 2,H CB D4
RES4.B CB AO RR A CB 1F SET 2.L CB D5
RES4.C CB A1 RR B CB 18 SET 3, (HL) CB DE
RES4.D CB A2 RR C CB 19 SET 3, (IX+dis) DD CB XX DE
RES4,E CB A3 RR D CB 1A SET 3, (IY+dis) FD CB XX DE
RES4.H CB A4 RR E CB 1B SET 3,A CB DF
RES4.L CB A5 RR H CB 1C SET 3.B CB D8
RES 5 (HL) CB AE RR L CB 1D SET 3,C CB D9
RES 5, (IX+dis) DD CB XX AE RRA 1F SET 3,D CB DA
RES 5, (IY+dis) FD CB XX AE RRC (HL) CBOE SET 3,E CB DB
RES 5,A CB AF RRC (IX+dis) DD CB XX OE SET 3,H CB DC
RES5.B CB A8 RRC (IY+dis) FD CB XX OE SET 3,L CB DD
RES 5,C CB A9 RRC A CB OF SET 4, (HL) CBE6
RES 5,D CB AA RRC B CB 08 SET 4, (IX+dis) DD CB XX E6
RES5.E CB AB RRC C CB 09 SET 4, (IY+dis) FD CB XX E6
RES5.H CB AC RRC D CB OA SET 4,A CB E7
RES5.L CB AD RRC E CH OB SET 4,B CB EO
RES6, (HL) CB B6 RRC H CBOC SET 4,C CB E1
RES 6, (IX+dis) DD CB XX B6 RRC L CB OD SET 4,D CB E2
RES 6, (IY+dis) FD CB XX B6 RRCA OF SET 4,E CB E3
RES 6,A CB B7 RRD ED 67 SET 4,H CB E4
RES6.B CB BO RST 00 C7 SET 4,L CB E5
RES6.C CB B1 RST 08 CF SET 5, (HL) CB EE
RES6.D CB B2 RST 10 D7 SET 5, (IX+dis) DD CB XX EE
RES6.E CB B3 RST 18 DF SET 5, (IY+dis) FD CB XX EE
RES6.H CB B4 RST 20 E7 SET 5,A CB EF
RES6.L CB B5 RST 28 EF SET 5.B CB E8
RES 7, (HL) CB BE RST 30 F7 SET 5,C CB E9
RES 7, (IX+dis) DD CB XX BE RST 38 FF SET 5.D CB EA
RES 7, (IY+dis) FD CB XX BE SBC A, (HL) 9E SET 5.E CB EB
RES 7,A CB BF SBC A, (IX+dis) DD 9E XX SET 5,H CB EC
RES 7,B CB B8 SBC A, (IY+dis) FD9E XX SET 5,L CB ED
RES7.C CB B9 SBC A,A 9F SET 6, (HL) CB F6
RES7.D CB BA SBC A,B 98 SET 6, (IX+dis) DD CB XX F6
RES7.E CB BB SBC A,C 99 SET 6, (IY+dis) FD CB XX F6
RES 7,H CB BC SBC A.D 9A SET 6,A CB F7
RES 7,L CB BD SBC A,n DE XX SET 6,B CB FO
RET C9 SBC A,E 9B SET 6,C CB F1
RETC D8 SBC A,H 9C SET 6,D CB F2
RET M F8 SBC A.L 9D SET 6,E CB F3
RET NC DO SBC HL.BC ED 42 SET 6.H CB F4
RET NZ CO SBC HL,DE ED 52 SET 6,L CB F5
RET P FO SBC HL,HL ED 62 SET 7, (HL) CB FE
RET PE E8 SBC HL.SP ED 72 SET 7, (IX+dis) DD CB XX FE
RET PO EO SCF 37 SET 7,(IY+dis) FD CB XX FE
RET Z C8 SETO, (HL) CB C6 SET 7,A CB FF
RETI ED4D SET 0, (IX+dis) DD CB XX C6 SET 7,B CB F8
RETN ED 45 SETO, (IY+dis) FD CB XX C6 SET 7,C CB F9
RL (HL) CB 16 SET 0,A CB C7 SET 7,D CB FA
RL (IX+dis) DD CB XX 16 SET 0,B CB CO SET 7,E CB FB
RL (IY+dis) FD CB XX 16 SET 0,C CB C1 SET 7,H CB FC
RL A CB 17 SET 0,D CB C2 SET 7,L CB FD
RL B CB 10 SET O.E CB C3 SLA (HL) CB26
RL C CB 11 SET O.H CB C4 SLA (IX+dis) DD CB XX 26
RL D CB 12 SET 0,L CB C5 SLA (IY+dis) FD CB XX 26
RL E CB 13 SET 1, (HL) CB CE SLA A CB 27
RL H CB 14 SET 1, (IX*dis) DD CB XX CE SLA B CB 20
RL L CB 15 SET 1, (IY+dis) FD CB XX CE SLA C CB 21
RLA 17 SET 1,A CB CF SLA D CB 22
RLC (HL) CB06 SET 1 ,B CB C8 SLA E CB 23
RLC (IX+dis) DD CB XX 06 SET 1 ,C CB C9 SLA H CB 24
RLC (IY+dis) FD CB XX 06 SET 1 ,D CB CA SLA L CB 25
RLC A CB 07 SET 1,E CB CB SRA (HL) CB2E
RLC B CBOO SET 1.H CB CC SRA (IX+dis) DD CB XX 2E
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SRA (IY+dis) FDCBXX2E
SRA A CB2F
SRA B CB 28
SRAC CB29
SRA D CB 2A
SRA E CB 2B
SRA H CB 2C
SRA L CB 2D
SRL (HL) CB3E
SRL <IX+dis> DDCBXX3E
SRL (IY+d's) FDCBXX3E
SRL A CB3F
SRL B CB 38
SRLC CB39
SRLD CB3A
SRLE CB3B
SRLH CB3C
SRLL CB3D
SUB (HL) 96
SUB IIX+disl DD96XX
SUB (IY+dis) FD96XX
SUB A 97
SUB B 90
SUBC 91
SUB D 92
SUB E D6 XX
SUB n 93
SUB H 94
SUB L 95
XOR (HL) AE
XOR (IX+dis) DDAEXX
XOR (IY+dis) FDAEXX
XOR A AF
XOR B A9
XOR C A9
XOR D AA
XOR n EE XX
XOR E AB
XSOR H AC
XOR L AO



THE COMPLETE
SINCLAIR 
LIBRARY

Dr. Ian Logan, winner of the 1981 Rosetta Stone Award has written 
three essential books for those who really want to understand the 
full working of the SINCLAIR ZX81I
Understanding Your ZX81 ROM
In this book Dr. Logan gives a complete overview of Z8O machine 
language using the ZX81 monitor program as an example. Dr.
Logan explains the structure of the ZX81 ROM. its peculiarities, and 
how you can use the ZX81 ROM routines for your own purposes. 
PLUS a special section which shows how you can squeeze more 
power info your ZX81 by using machine language and machine 
language subroutines Complete with example programs, 
reference tables, etc
basic course Programs othbr TITUS AVAIIABU
on Cassette — Melbourne House IS the world s leading
All major programs in the BASIC Course are publisher of books and software for the 
available pre-recorded in this set of Sinclair ZX81
cassettes Not only SO Programs for the

Sinclair ZXS1: IK —
Not only over 30 programs, from arcade 
games to the final challenging Draughts 
playing program, which all fit into the 
unexpanded IK Sinclair ZX81 Great value1

ZX81 ROM Disassembly 
Part A
This book is for the programmer 
that needs complete answers 
about the ZX81 Dr Logan has 
examined all routines in the ROM 
and here he comments on each 
one It covers all ROM locations 
from OOOOH to OF54H, and 
includes all functions except for the 
routines used in the floating point 
calculator

ZX81 ROM Disassembly 
Part B
In this the companion volume to 
Part A Dr Logan covers locations 
OF55H to 1DFFH and includes all 
routines used in the ZX81 floating 
point calculator

Machine Language 
Programming Made Simple for 
the Sinclair —
A complete beginner s guide to the 
computer s own language - Z8O machine 
language Machine language programs 
enable you to save on memory and 
typically give you programs that run 10-30 
times faster than BASIC programs

* complete Sinclair zxbi 
Basic Course is a 240 page 
in-depth comprehensive manual 
for complete beginners and 
experienced programmers
Over 1OO programs and examples 
illustrate the use and possibilities 
of the Sinclair ZX81
• programming techniques and 

memory saving devices
• every function covered
• BASIC Course programs also 

available on cassette

Melbourne House Software Inc., 347 Reedwood Drive, 
Nashville TN 37217.
Melbourne House (Publishers) Ltd., Glebe Cottage, 
Glebe House, Station Road, Cheddington, Leighton 
Buzzard, Bedfordshire, LU7 7NA.
Melbourne House (Australia) Pty. Ltd., Suite 4, 75
Palmerston Crescent, South Melbourne, Victoria, 3205.

MELBOURNE HOUSE PUBLISHERS





"I wanted to review this book because I'm the person it 
was written for.

"I taught myself BASIC and can now do most of the 
things I want to with it. I felt that Machine Language 
would be a good addition to speed up some programs 

and improve display. The idea of Machine Language 
'made simple' appealed to me.

"Each Machine Language command is explained with 
exercises as learning aids.

"It's the best explanation of Machine Language for 
Machine Language beginners I've seen. Its friendly style 
is painless reading and simple analogies help make this 
language clear. This introduction is a must."

SYNTAX March 1982

Melbourne House Publishers
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